

Advanced Design System 2011.01

Feburary 2011 HSUPA Design Library

© Agilent Technologies, Inc. 2000-2011

5301 Stevens Creek Blvd., Santa Clara, CA 95052 USA

No part of this documentation may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Acknowledgments

Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. and other countries. Mentor products and processes are registered trademarks of Mentor Graphics Corporation. * Calibre is a trademark of Mentor Graphics Corporation in the US and other countries. "Microsoft®, Windows®, MS Windows®, Windows NT®, Windows 2000® and Windows Internet Explorer® are U.S. registered trademarks of Microsoft Corporation. Pentium® is a U.S. registered trademark of Intel Corporation. PostScript® and Acrobat® are trademarks of Adobe Systems Incorporated, UNIX® is a registered trademark of the Open Group, Oracle and Java and registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. SystemC® is a registered trademark of Open SystemC Initiative, Inc. in the United States and other countries and is used with permission. MATLAB® is a U.S. registered trademark of The Math Works, Inc.. HiSIM2 source code, and all copyrights, trade secrets or other intellectual property rights in and to the source code in its entirety, is owned by Hiroshima University and STARC. FLEXIm is a trademark of Globetrotter Software, Incorporated, Layout Boolean Engine by Klaas Holwerda, v1.7 http://www.xs4all.nl/~kholwerd/bool.html . FreeType Project, Copyright (c) 1996-1999 by David Turner, Robert Wilhelm, and Werner Lemberg. QuestAgent search engine (c) 2000-2002, JObjects. Motif is a trademark of the Open Software Foundation. Netscape is a trademark of Netscape Communications Corporation. Netscape Portable Runtime (NSPR), Copyright (c) 1998-2003 The Mozilla Organization. A copy of the Mozilla Public License is at http://www.mozilla.org/MPL/ . FFTW, The Fastest Fourier Transform in the West, Copyright (c) 1997-1999 Massachusetts Institute of Technology. All rights reserved.

The following third-party libraries are used by the NlogN Momentum solver:

"This program includes Metis 4.0, Copyright © 1998, Regents of the University of Minnesota", <u>http://www.cs.umn.edu/~metis</u>, METIS was written by George Karypis (karypis@cs.umn.edu).

Intel@ Math Kernel Library, http://www.intel.com/software/products/mkl

SuperLU_MT version 2.0 - Copyright © 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from U.S. Dept. of Energy). All rights reserved. SuperLU Disclaimer: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

7-zip - 7-Zip Copyright: Copyright (C) 1999-2009 Igor Pavlov. Licenses for files are:

Advanced Design System 2011.01 - HSUPA Design Library 7z.dll: GNU LGPL + unRAR restriction, All other files: GNU LGPL. 7-zip License: This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. unRAR copyright: The decompression engine for RAR archives was developed using source code of unRAR program.All copyrights to original unRAR code are owned by Alexander Roshal. unRAR License: The unRAR sources cannot be used to re-create the RAR compression algorithm, which is proprietary. Distribution of modified unRAR sources in separate form or as a part of other software is permitted, provided that it is clearly stated in the documentation and source comments that the code may not be used to develop a RAR (WinRAR) compatible archiver. 7-zip Availability: http://www.7-zip.org/

AMD Version 2.2 - AMD Notice: The AMD code was modified. Used by permission. AMD copyright: AMD Version 2.2, Copyright © 2007 by Timothy A. Davis, Patrick R. Amestoy, and Iain S. Duff. All Rights Reserved. AMD License: Your use or distribution of AMD or any modified version of AMD implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU LGPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. AMD Availability: http://www.cise.ufl.edu/research/sparse/amd

UMFPACK 5.0.2 - UMFPACK Notice: The UMFPACK code was modified. Used by permission. UMFPACK Copyright: UMFPACK Copyright © 1995-2006 by Timothy A. Davis. All Rights Reserved, UMFPACK License: Your use or distribution of UMFPACK or any modified version of UMFPACK implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St. Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU LGPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included.

UMFPACK Availability: <u>http://www.cise.ufl.edu/research/sparse/umfpack</u> UMFPACK (including versions 2.2.1 and earlier, in FORTRAN) is available at <u>http://www.cise.ufl.edu/research/sparse</u>. MA38 is available in the Harwell Subroutine

Library. This version of UMFPACK includes a modified form of COLAMD Version 2.0, originally released on Jan. 31, 2000, also available at

<u>http://www.cise.ufl.edu/research/sparse</u> . COLAMD V2.0 is also incorporated as a built-in function in MATLAB version 6.1, by The MathWorks, Inc. <u>http://www.mathworks.com</u> . COLAMD V1.0 appears as a column-preordering in SuperLU (SuperLU is available at <u>http://www.netlib.org</u>). UMFPACK v4.0 is a built-in routine in MATLAB 6.5. UMFPACK v4.3 is a built-in routine in MATLAB 7.1.

Qt Version 4.6.3 - Qt Notice: The Qt code was modified. Used by permission. Qt copyright: Qt Version 4.6.3, Copyright (c) 2010 by Nokia Corporation. All Rights Reserved. Qt License: Your use or distribution of Qt or any modified version of Qt implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the

terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU LGPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies.User

documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission."

Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. Qt Availability: <u>http://www.qtsoftware.com/downloads</u> Patches Applied to Qt can be found in the installation at:

\$HPEESOF_DIR/prod/licenses/thirdparty/qt/patches. You may also contact Brian Buchanan at Agilent Inc. at brian_buchanan@agilent.com for more information.

The HiSIM_HV source code, and all copyrights, trade secrets or other intellectual property rights in and to the source code, is owned by Hiroshima University and/or STARC.

Errata The ADS product may contain references to "HP" or "HPEESOF" such as in file names and directory names. The business entity formerly known as "HP EEsof" is now part of Agilent Technologies and is known as "Agilent EEsof". To avoid broken functionality and to maintain backward compatibility for our customers, we did not change all the names and labels that contain "HP" or "HPEESOF" references.

Warranty The material contained in this document is provided "as is", and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this documentation and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses The hardware and/or software described in this document are

Advanced Design System 2011.01 - HSUPA Design Library furnished under a license and may be used or copied only in accordance with the terms of such license. Portions of this product include the SystemC software licensed under Open Source terms, which are available for download at <u>http://systemc.org/</u>. This software is redistributed by Agilent. The Contributors of the SystemC software provide this software "as is" and offer no warranty of any kind, express or implied, including without limitation warranties or conditions or title and non-infringement, and implied warranties or conditions merchantability and fitness for a particular purpose. Contributors shall not be liable for any damages of any kind including without limitation direct, indirect, special, incidental and consequential damages, such as lost profits. Any provisions that differ from this disclaimer are offered by Agilent only.

Restricted Rights Legend U.S. Government Restricted Rights. Software and technical data rights granted to the federal government include only those rights customarily provided to end user customers. Agilent provides this customary commercial license in Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212 (Computer Software) and, for the Department of Defense, DFARS 252.227-7015 (Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial Computer Software or Computer Software Documentation).

About the HSUPA Design Library	8
3GPP Technical Specifications Supported	9
HSUPA Systems	10
Specifications for E-DCH and E-DPDCH	11
	12
	13
	14 1 E
	15
Cignaling Detection Performance Measurements	10
Signaling Detection Performance Measurements - Faise Aldrin	20
Signaling Detection Performance Measurements - Missed Detection	22 74
	24 25
	20
	20
	29 21
	22 21
	22
	22
	סכ 27
)/ 20
	20
	29 47
	+2 16
	+0 50
HSUDA DI SourcePE	55
	55
HSUPA EAGCH Decode	21
	55
HSUPA FAGCH RM	55
HSUPA EDPCCH ChDecode	50 67
HSUPA EDPCCH ChEncode	57 69
	70
HSUPA FHICH ERGCH Decode	72
	7 <u>4</u>
HSUPA FVM Old	78
HSUPA FRC	80
HSUPA FRC Receiver	82
HSUPA FRC ReceiverRF	85
HSUPA FRC RF	88
HSUPA Interleaver	91
HSUPA OCNS	93
HSUPA ParamCalc	95
HSUPA PhCH Demap	99
HSUPA PhCH Map	01
HSUPA RateDematch	03
HSUPA RateMatch	05
HSUPA RF EVM	07
HSUPA RF OutputPower	09
HSUPA SignatureSgn	11
HSUPA_Spread	16
HSUPA UL Rake	19
HSUPA UL Source	25
HSUPA_UL_SourceRF	28
HSUPA User Equipment Receiver Design Examples	31
E-AGCH Demodulation Performance Measurements	32

Advanced Design System 2011.01 - HSUPA Design Library

E-HICH Detection Performance Measurements 1	.34
E-RGCH Detection Performance Measurements 1	36
HSUPA User Equipment Transmitter Design Examples	38
Adjacent Channel Leakage Power Ratio Measurements	39
CCDF and Peak-to-Mean Information Measurements	41
Error Vector Magnitude Measurements	.43
Maximum Power Measurements	45
Spectrum Emission Mask Measurements 1	.47

About the HSUPA Design Library

The HSUPA Design Library is designed for 3GPP FDD enhanced uplink, also known as HSUPA, defined in release 6 of 3GPP specification. This design library focuses on the physical layer aspects of HSUPA systems and is intended to be a baseline system for designers to get an idea of what nominal or ideal system performance would be. Evaluations can be made regarding degraded system performance due to system impairments that may include non-ideal component performance.

The transport channels and physical channels defined in release 5 and previous versions of 3GPP specification such as DCH, DPDCH are also supported by HSUPA design library. But they are treated as the accessory channels because HSUPA design library focus on the modeling and test of channels defined in release 6, say HSUPA. The test for the scenario with only 3GPP FDD with/without HSDPA can be implemented by 3GPP design library.

3GPP Technical Specifications Supported

3GPP committee updates 3GPP technical specifications every 3 months. Each of 3GPP specification is further classified by features: release '99 (Version 3.x.x), release 4 (Version 4.x.x), release 5 (Version 5.x.x), release 6 (Version 6.x.x) release 7(Version 7.x.x). Basically, the contents defined in lower version specifications duplicate the contents from release '99, release 4 and release 5 that are published simultaneously.

The HSUPA design library is compliant with 3GPP release 6 technical specifications published in 2006-03.

HSUPA design library also reuses some 3GPP design library models in the application level. The technical specifications of those models were published in 2002-03 for release '99 content and 2003-09 for HSDPA part in release 5. The version may be changed if 3GPP design library is updated.

HSUPA Systems

HSUPA aims at providing significant enhancements in terms of user experience (throughput and delay) and/or capacity. It enables you to achieve significant improvements in overall system performance when operated together with HSDPA. In other words, the aim of HSUPA is to enhance the uplink DCH operation and performance to support services like video-clips, multimedia, e-mail, telematics, gaming, videostreaming, and etc. At the same time, HSUPA is backward-compatible with 3GPP FDD with HSDPA defined in release 5 and previous versions of 3GPP specification.

In the uplink, two new physical channels E-DPDCH and E-DPCCH are defined. The **HSUPA uplink transmitter and receiver structure** block diagram for E-DPDCH is shown below:

In HSUPA downlink, three new channels E-AGCH, E-HICH and E-RGCH are defined. The HSUPA downlink physical layer structure is almost the same as 3GPP FDD with HSDPA defined in release 5 and previous released versions. All downlink physical channels including three new channels are spread, QPSK-mapped and scrambled separately and then combined as the downlink signal. The structure of downlink transmitter and receiver can be found in 3GPP design library.

Specifications for E-DCH and E-DPDCH

• HSUPA E-DCH physical layer categories are shown in the **FDD E-DCH physical layer** categories table below:

E-DCH category	Maximum number of E- DPDCH transmitted	Minimum spreading factor of E- DPDCH	Support for 10 and 2 ms TTI E-DCH	Maximum number of bits of an E-DCH transport block transmitted within a 10 ms E-DCH TTI	Maximum number of bits of an E-DCH transport block transmitted within a 2 ms E-DCH TTI
Category 1	1	SF4	10 ms TTI only	7110	-
Category 2	2	SF4	10 ms and 2 ms TTI	14484	2798
Category 3	2	SF4	10 ms TTI only	14484	-
Category 4	2	SF2	10 ms and 2 ms TTI	20000	5772
Category 5	2	SF2	10 ms TTI only	20000	-
Category 6	4	SF2	10 ms and 2 ms TTI	20000	11484
Category 7	4	SF2	10 ms and 2 ms TTI	20000	22996

NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4

• The **physical channel parameters on E-DPDCH for E-DCH test** are shown in the table below:

TTINumber of processes2 ms810 ms4

HSUPA Component Libraries Overview

The HSUPA Library is categorized as below: **Channel Components:**

• Multipath fading channel

Channel Coding Components:

- Turbo code as E-DCH forward error control code
- Revised TFCI Reed-Muller (RM) coding as E-DPCCH channel coding and signal quality indicator
- Orthogonal signature sequence as E-HICH/E-RGCH channel coding and signal quality indicator
- Rate match (puncturing and repetition) used to implement channel coding with flexible coding rate for E-DCH and E-AGCH
- Interleaving used to spread burst errors into random errors in order to improve the error correction code performance

Multiplex Components:

- Code segmentation used to adjust code block to suitable size
- Physical channel mapping used to map E-DCH to E-DPDCH
- Uplink spreader used to spread, power-scale and multiplex various uplink channels

Measurement Components :

- Throughput, BER and PER vs. retransmission time measurement
- Output power measurement as well as cubic metric calculator
- EVM and phase discontinuity measurements

Receiver Components:

- Rake receivers for HSUPA uplink and downlink
- Baseband receivers for HSUPA uplink and downlink
- RF receiver for HSUPA uplink and downlink Base Station and User Equipment Components

Signal Source Components:

- E-DCH information bit source which support HARQ process
- Uplink fixed reference channel in baseband and RF
- Uplink general signal source in baseband and RF
- Downlink signal source for E-AGCH and E-HICH/E-RGCH
- Downlink general signal source in baseband and RF

Design Examples

The RF characteristics can be measured using the HSUPA design library. RF measurements for user equipment (UE) are defined in Reference [5]; test methods are described in Reference [8]. For base station (BS), the RF characteristics are defined in Reference [6]; test methods are described in Reference [7].

- The HSUPA_BS_Rx_wrk workspace shows base station receiver performance on E-DCH. Designs for these measurements include:
 - E-DPDCH demodulation performance: BS_Rx_Demodulation
 - E-DPDCH demodulation performance in fading channel:
 - BS_Rx_DemodulationFading
 - E-DPCCH missed detection: BS_Rx_MissedDetection
 - E-DPCCH missed detection in fading channel: BS_Rx_MissedDetectionFading
 - E-DPCCH false alarm: BS_Rx_FalseAlarm
 - E-DPCCH false alarm in fading channel: BS_Rx_FalseAlarmFading
- The HSUPA_UE_Rx_wrk workspace shows HSUPA user equipment receiver performance. Designs for these measurements include:
 - E-AGCH demodulation performance: UE_Rx_EAGCH_Demodulation
 - E-AGCH demodulation performance in fading channel:
 - UE_Rx_EAGCH_DemodulationFading
 - E-HICH detection performance: UE_Rx_EHICH_Detection
 - E-HICH detection performance in fading channel: UE_Rx_EHICH_DetectionFading
 - E-RGCH detection performance: UE_Rx_ERGCH_Detection
 - E-RGCH detection performance in fading channel:
 - UE_Rx_ERGCH_DetectionFading
- The HSUPA_UE_Tx_wrk workspace demonstrates user equipment transmitter measurement characteristics. Designs for these measurements include:
 - Adjacent channel leakage power ratio measurements: UE_Tx_ACLR
 - CCDF and peak-to-mean information measurements: UE_Tx_CCDF
 - Error vector magnitude and phase discontinuity measurements: UE_Tx_EVM
 - Maximum power measurements: UE_Tx_Max_Power
 - Spectrum emission measurements: UE_Tx_SpecEmissions
- The HSUPA_RF_Verification_wrk workspace has only one WTB-like design:
 SUPA_UE_TX_test

Glossary of Terms

3GPP	third generation partnership project
ACLR	adjacent channel leakage power ratio
AWGN	additive white Gaussian noise
CCDF	complementary cumulative distribution function
DCH	dedicated channel
DPDCH	dedicated physical data channel
E-AGCH	E-DCH absolute grant channel
E-DCH	enhanced DCH
E-DPCCH	E-DCH HARQ acknowledgement indicator channel
E- DPDCH	E-DCH relative grant channel
E-HICH	E-DCH dedicated physical control channel
E-RGCH	E-DCH dedicated physical data channel
EVM	error vector magnitude
FDD	frequency division duplex
FEC	forward error correction
HSDPA	high speed downlink packet access
HSUPA	high speed uplink packet access
PA	power amplifier
PER	packet error rate
QPSK	quadrature phase shift keying
RF	radio frequency
RX	receive or receiver
TTI	transmission timing interval
ТΧ	transmit or transmitter

References

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.10.0, May 2008.
- 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 7.9.0, Sept. 2008.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sept. 2008.
- 4. 3GPP Technical Specification TS 25.214, "Physical layer procedures (FDD)," Version 7.9.0, May 2008.
- 5. 3GPP Technical Specification TS 25.101, "UE Radio transmission and Reception (FDD)," Version 7.13.0, Sept. 2008.
- 6. 3GPP Technical Specification TS 25.104, "UTRA (BS) FDD: Radio transmission and Reception," Version 7.10.0, Mar. 2008.
- 7. 3GPP Technical Specification TS 25.141, "Base station conformance test," Version 7.11.0, Mar. 2008.
- 8. 3GPP Technical Specification TS 34.121, "Radio transmission and reception (FDD)," Version 7.5.0, June 2007.
- 9. 3GPP Technical Specification TS 25.306, "UE Radio Access capabilities," Version 7.8.0, Sept. 2008.
- 10. 3GPP Technical Specification TS 25.321, "Medium Access Control (MAC) protocol specification". Version 7.7.0, Dec. 2008.

HSUPA Base Station Receiver Design Examples

The HSUPA_BS_Rx_wrk workspace shows base station receiver measurement performances, including E-DPDCH demodulation performance, E-DPCCH signaling false alarm performance, and E-DPCCH signaling missed detection performance.

Designs for these measurements are described in the following sections; they include:

- Demodulation performance:
 - BS_Rx_Demodulation
 - BS_Rx_DemodulationFading
- Signaling detection performance false alarm:
 - BS_RX_FalseAlarm
 - BS_RX_FalseAlarmFading
- Signaling detection performance missed detection:
 - BS_RX_MissedDetection
 - BS_RX_MissedDetectionFading

Designs under this workspace consist of:

- Uplink RF band signal source: HSUPA_FRC_RF is used to provide an RF HSUPA uplink signal source.
- Fading channel: HSPA_Channel is used to provide various multi-path fading propagation conditions.
- AWGN noise: AddNDensity is used to provide AWGN in order to calibrate the system E_c / N_0 at certain levels, which are required by various performance measurements.
- Base station RF receiver: HSUPA_FRC_ReceiverRF is used to provide a receiver of RF HSUPA uplink signals.

Demodulation Performance Measurements

Design: BS_Rx_DemodulationFading, BS_Rx_Demodulation, BS_RX_Demodulation_FRC8

Features:

- Base station receiver demodulation performance measurements
- Uplink fixed reference channel (FRC) and receiver
- ARQ (feedback) controlled source
- Integrated RF models
- Throughput (R)
- Multiple E $_{\rm c}$ /N $_{\rm 0}$ measurement points
- Multi-path fading propagation conditions

Description:

- BS_Rx_DemodulationFading measures base station receiver E-DPDCH demodulation performance according to section 8.11 in TS 25.104.
- BS_Rx_Demodulation measures base station receiver E-DPDCH demodulation performance over AWGN condition to provide the baseline reference.
- BS_Rx_DemodulationFading_FRC8 measures base station receiver E-DPDCH demodulation performance according to section 8.11 in TS 25.104.

The schematics of fading and AWGN conditions are shown in BS_Rx_DemodulationFading Schematic and BS_Rx_Demodulation Schematic respectively.

BS_Rx_DemodulationFading Schematic

BS_Rx_Demodulation Schematic

Advanced Design System 2011.01 - HSUPA Design Library

BS_Rx_DemodulationFading_FRC8 Schematic

Simulation Results:

Simulation results are shown in Throughput Results (R) for Base Station Demodulation Performance Measurement (Fading) and Throughput Results (R) for Base Station Demodulation Performance Measurement (AWGN).

Throughput Results (R) for Base Station Demodulation Performance Measurement (Fading)

٦

HSUPA E-DPDCH Demodulation Performance FadingTables								
RefCH		Profile		(FCarrie	er[0,0])/(1 MHz)	igna	alPower_dB	3m[0,0])
FI	RC4 RC4		PA3 PA3		1950.000	24.0		24.000
			Throughp	ut results				
Index	E	R dN0=-7.100 EdN0=-0.600		R_Pct EdN0=-7.100 EdN		ct EcN0=-(0.600	
500		207.101		399.989	0.	408		0.788
3GPP Specifica	ation	TS 25.104 (2	2006-3)) Sectio	n 8.11			
Specification requirements Test results								
R >= 30% and R >= 70% of maximum information bit rate at given Eo/N0 Passed For PA3 channel simulation, Eo/N0 are -7.1 and -0.8 d B								
Notes: Please go to page titled Equations to see variable definitions.								

Throughput Results (R) for Base Station Demodulation Performance Measurement (AWGN)

HSUPA E-DPDCH Demodulation Performance Tables							
real(FCarrier[0,0])/(1 M Hz)	I(Sig	nalPower_dBm[0	,0])	real(So	ourceR[0,0])	
	1950.000		24	.000		50.000	
		Т	hroughput results				
Index		R			R_F	Pct	
Index	EcN0=-5.	300 EcN0=0.500 EcN		10=-5.300	EcN0=0.500		
10000	674	.200	1276.826		0.498	0.944	
3GPP Specif	ication T	5 25.1	04 (2006-3)	Sec	tion 8.11		
Specification requirements Test results							
R >= 30% and R >= 70% of maximum information bit rate at given Ec/N0 ForAW GN simulation, Ec/N0 are -5.3 and 0.5 dB. Passed							
Notes: Please go to page titled Equations to see variable definitions.							

Throughput Results (R) for Base Station Demodulation Performance Measurement (Fading) for FRC8

HSUPA E-DPDCH Demodulation Performance Fading-Tables								
real(FCarrier)/(1 MHz)	real(Sig	nalPower_dBm)	RefCH		Profile			
1950.000	24.000			FRC8	PA3			
Throughput results								
Index	F	R		R_Pct				
501			5806.044		0.716			
3GPP Specification	1 TS 25	.104 (2006-3)	Section 8.1	1				
Specification requirer	nents		Tes	st results				
R >= 70% of maximum in form For PA3 chan nel simulation, E	te at given Ec/N0 6.2dB		Passed					
Notes : Please go to page titled Equations to see variable definitions.								

Benchmark:

Γ

Simulation time is about 8.3 hours for two sweep points of 500 10ms TTI over fading condition and 4 hours for two sweep points of 10000 2ms TTI over AWGN condition, on a P4/2.6GHz 512MB PC running ADS 2005A on Microsoft Windows 2000.

Signaling Detection Performance Measurements -False Alarm

Design: BS_RX_FalseAlarmFading, BS_RX_FalseAlarm

Features:

- Base station receiver E-DPCCH signaling detection performance measurements
- Uplink fixed reference channel (FRC) and receiver
- Integrated RF models
- Multi-path fading propagation conditions

Description:

- BS_RX_FalseAlarmFading measures base station receiver E-DPCCH signaling false alarm performance according to section 8.12 in TS 25.104.
- BS_RX_FalseAlarm measures base station receiver E-DPCCH signaling false alarm performance over AWGN condition to provide the baseline reference.

The schematics for BS_RX_FalseAlarmFading and BS_RX_FalseAlarm are shown in BS_RX_FalseAlarmFading Schematic and BS_RX_FalseAlarm Schematic respectively.

BS_RX_FalseAlarmFading Schematic

BS_RX_FalseAlarm Schematic

Simulation Results:

Advanced Design System 2011.01 - HSUPA Design Library

Simulation results are shown in False Alarm Results for Base Station Signaling Detection Performance Measurements (Fading) and False Alarm Results for Base Station Signaling Detection Performance Measurements (AWGN).

False Alarm Results for Base Station Signaling Detection Performance Measurements (Fading)

HSUPA E-DPCCH False Alarm FadingTables								
I(FCarrier)(1 MHz)	ignalPo	wer_dBm)	Profile		RefCH			
1950.000		24.000		PB3	FRC1			
	False alarm results							
real(EcN0	l)	Err	orRate]				
	-13.800		0.004					
3GPP Specific	ation TS	S 25.104 (2	2006-3) Sec	tion 8	.12			
Specification requirements Test results								
Probability of false als For PB3 channel s imu		Passed						
Notes: Please go to page titled Equations to see variable definitions.								

False Alarm Results for Base Station Signaling Detection Performance Measurements (AWGN)

HSUPA E-DPCCH False AlarmTables								
real(FCarrier)/(1 MHz)	(S	signalPower_dBm)	real(S	SourceR)				
1950.000		24.000		50.000				
Missed detection results								
real(EcN0)		BER						
-21.	400		0.004					
3GPP Specification TS 25.104 (2006-3) Section 8.12								
Specification requirements Test results								
Probability of false alarm < 1e-2 at given Ec/N0 Passed For AW GN channel, Ec/N0 is -21.4 dB.								
Notes: Please go to page titled Equations to see variable definitions.								

Benchmark:

Simulation time is about 14.7 hours for 5000 2ms TTI over fading (PB3) condition and 1.5 hours for 10000 2ms TTI over AWGN condition, on a P4/2.6GHz 512MB PC running ADS 2005A on Microsoft Windows 2000.

Signaling Detection Performance Measurements -Missed Detection

Design: BS_RX_MissedDetectionFading, BS_RX_MissedDetection

Features:

- Base station receiver E-DPCCH signaling detection performance measurements
- Uplink fixed reference channel (FRC) and receiver
- Integrated RF models
- Multi-path fading propagation conditions

Description:

- BS_RX_MissedDetectionFading measures base station receiver E-DPCCH signaling missed detection performance according to section 8.12 in TS 25.104.
- BS_RX_MissedDetection measures base station receiver E-DPCCH signaling missed detection performance over AWGN condition to provide the baseline reference.

The schematics for fading and AWGN conditions are shown in RS_RX_MissadDatastionEading Schematic and RS_RX_MissadDatastic

 ${\sf BS}_{\sf RX}_{\sf MissedDetectionFading\ Schematic\ and\ {\sf BS}_{\sf RX}_{\sf MissedDetection\ Schematic\ respectively}.$

BS_RX_MissedDetectionFading Schematic

BS_RX_MissedDetection Schematic

Simulation Results:

Simulation results are shown in Missed Detection Results for Base Station Signaling Detection Performance Measurements (Fading) and Missed Detection Results for Base Station Signaling Detection Performance Measurements (AWGN).

Missed Detection Results for Base Station Signaling Detection Performance Measurements (Fading)

HSUPA E-[DPC	CH N	lissed	Detection	n Fa	ading	Table	s
real(FCarrier)/(1 MH	z)	.SignalPow	er_dBm)	RefCH		Profi	le	٦
1950.0	00		24.000	F	RC1		PB3	
Missed detection results Error rate result								
real(EcN0)	Misse	edRate FER BER						
1.500E0	4	4.000E-4		0.000			0.000	
3GPP Specifica	3GPP Specification TS 25.104 (2006-3) Section 8.12							
Specification req	ents		Test r	results				
Probability of Missed De For PB3 channel simula	< 0.2% stg /N0 is 1.5 dB	iven Ec/NO		P	assed			
Notes: Please go to pa	otes: Please go to page titled Equations to see variable definitions.							

Missed Detection Results for Base Station Signaling Detection Performance Measurements (AWGN)

HSUPA E-DPCCH Missed DetectionTables							
real(FCarrier)	(1 MHz)	ſ	eal(SignalPower_dBm)	real(SourceR))		
1950.000			24.000		50.000		
Missed detection results Error rate result							
real(EcN0)	Missed.BE	R	FER	Err.BER			
-6.100	0.000		0.000		0.000		
3GPP Specific	ation TS 2	25.10	04 (2006-3) Section 8	3.12			
Specification re	Test results						
Probability of Missed I For AW GN channels i	Detection < 0.2 mulation, Ec/NC	Passed					
Notes: Please go to page titled Equations to see variable definitions.							

Benchmark:

Simulation time is about 15.5 hours for 5000 2ms TTI over fading (PB3) condition and 1.5 hours for 10000 2ms TTI over AWGN condition, on a P4/2.6GHz 512MB PC running ADS 2005A on Microsoft Windows 2000.

References

1. 3GPP Technical Specification TS 25.104, "UTRA (BS) FDD: Radio transmission and Reception," Version 7.10.0, Mar. 2008.

HSUPA Components

Contents

- HSUPA Bits (hsupa)
- HSUPA ChEncode (hsupa)
- HSUPA CodeBlkSeg (hsupa)
- HSUPA DL Source (hsupa)
- HSUPA DL SourceRF (hsupa)
- HSUPA EAGCH (hsupa)
- HSUPA EAGCH RM (hsupa)
- HSUPA EDPCCH ChEncode (hsupa)
- HSUPA EHICH ERGCH (hsupa)
- HSUPA EVM (hsupa)
- HSUPA EVM Old (hsupa)
- HSUPA FRC (hsupa)
- HSUPA FRC RF (hsupa)
- HSUPA Interleaver (hsupa)
- HSUPA OCNS (hsupa)
- HSUPA ParamCalc (hsupa)
- HSUPA PhCH Map (hsupa)
- HSUPA RateMatch (hsupa)
- HSUPA RF EVM (hsupa)
- HSUPA RF OutputPower (hsupa)
- HSUPA SignatureSqn (hsupa)
- HSUPA Spread (hsupa)
- HSUPA UL Source (hsupa)
- HSUPA UL SourceRF (hsupa)
- HSPA Channel (hsupa)
- HSUPA BER Throughput (hsupa)
- HSUPA ChDecode (hsupa)
- HSUPA CodeBlkDeseg (hsupa)
- HSUPA Deinterleaver (hsupa)
- HSUPA DL Rake (hsupa)
- HSUPA DL Receiver (hsupa)
- HSUPA DL ReceiverRF (hsupa)
- HSUPA EAGCH Decode (hsupa)
- HSUPA EAGCH DeRM (hsupa)
- HSUPA EDPCCH ChDecode (hsupa)
- HSUPA EHICH ERGCH Decode (hsupa)
- HSUPA FRC Receiver (hsupa)
- HSUPA FRC ReceiverRF (hsupa)
- HSUPA PhCH Demap (hsupa)
- HSUPA RateDematch (hsupa)
- HSUPA UL Rake (hsupa)

Description: HSPA fading channel model **Library:** HSUPA, Channel

Parameters

Name	Description	Default	Unit	Туре	Range
RIn	Input resistance	DefaultRIn	Ohm	real	(0,∞)
ROut	Output resistance	DefaultROut	Ohm	real	(0,∞)
FreqBand	Frequency band: Band I II III IV, Band V VI	Band I II III IV		enum	
ChProfile	Channel profile: PA3, PB3, VA30, VA120, Case 8 for HSDPA CQI Test	VA30		enum	
VelocitySetting	Velocity setting: Follow ChProfile, User defined	Follow ChProfile		enum	
Velocity	Mobile velocity in km/hour	30		real	[1,500]
PathLoss	Option for inclusion of large-scale pathloss: NO, YES	NO		enum	
PropDistance	Propagation distance	2000	m	real	[500,5000]

Pin Inputs

Pin	Name	Description	Signal Type
1	input	channel input signal	timed

Pin Outputs

Pin	Name	Description	Signal Type
2	output	output signal	timed
3	outChM	fading factor	multiple complex

Notes/Equations

- 1. This subnetwork is the fading channel emulator.
- 2. Each firing, 1 output token and 1 outChM token are generated when 1 input token is consumed.
- 3. The input signal is fed into a multipath Rayleigh fading channel based on a tappeddelay line model.
- 4. The Doppler spectrum is classic. The way to generate the classic Doppler spectrum is to pass AWGN noise through a shaping filter. This filter is identical with the one used in CDMA2K_ClassicSpec which is available in CDMA2K design library.
- 5. Fading channel profiles defined for HSUPA and HSDPA in [4] and [5] are supported. The mobile speed, relative channel delay spread and average power are given in the tables below:

Propagation Conditions for Multi-Path Fading Environments for HSDPA and HSUPA Performance Requirements (Pedestrian Speed)

Advanced Design System 2011.01 - HSUPA Design Library

		1			
ITU Pedestrian A	A Speed 3 km/h (PA3)	ITU Pedestrian B Speed 3 km/h (PB3)			
Speed for Band I, II, III and IV3 km/h		Speed for Band I, II, III and IV3 km/h			
Speed for Band V, VI7 km/h		Speed for Band V, VI7 km/h			
RelativeDelay[ns]	Relative MeanPower[dB]	RelativeDelay[ns]	Relative MeanPower[dB]		
0	0	0	0		
110	-9.7	200	-0.9		
190	-19.2	800	-4.9		
410	-22.8	1200	-8.0		
		2300	-7.8		
		3700	-23.9		

Propagation Conditions for Multi-Path Fading Environments for HSDPA and HSUPA Performance Requirements (Vehicular Speed)

ITU vehicular A	Speed 30 km/h (VA30)	ITU vehicular A Speed 120 km/h (VA120)			
Speed for Band I,	II, III and IV30 km/h	Speed for Band I, II, III and IV120 km/h			
Speed for Band V, VI71 km/h		Speed for Band V, VI282 km/h ⁺			
RelativeDelay[ns]	Relative MeanPower[dB]	RelativeDelay[ns] Relative MeanPower[d			
0	0	0	0		
310	-1.0	310	-1.0		
710	-9.0	710	-9.0		
1090	-10.0	1090	-10.0		
1730	-15.0	1730	-15.0		
2510	-20.0	2510	-20.0		

[†] Speed above 120 km/h is applicable to demodulation performance requirements only. **Propagation Conditions for CQI test in multi-path fading**

Case 8, speed 30 km/h						
Relative Delay [ns] Relative mean Power [d						
0	0					
976	-10					

- 6. Users can also customize the speed of each channel profile as explained below:
 - Set VelocitySetting = User defined.
 - Set Velocity to the target speed.
- 7. If the input time step is too large, interpolation will be performed to up-sample the signal so that the resulted time step will be less than 1 nsec. Simulation time in the case of a large interpolation rate would increase; in other cases when the delay for a path is larger, the signals to be buffered and interpolated would increase which would lead to increased simulation time.
- 8. Path loss is calculated according to [3], when PathLoss set to YES.
 - For ITU PA3 and PB3, pass loss is L=40 log $_{10}$ R+30 log $_{10}$ f + 49;
 - For ITU VA30, VA120, pass loss is L=40 (1 $4 \times 10^{-3} \Delta h_b$) log $_{10}$ R 18 log $_{10} \Delta hb$ hb+21 log $_{10}$ f + 80 dB where:

R: base station – mobile station separation (km), which can be set using parameter PropDistance

f: carrier frequency (MHz)

 Δh_{b} : base station antenna height (m), measured from the average rooftop level. Δh_{b} is fixed at 15m.

References

- 1. 3GPP Technical Specification TS 25.104, "UTRA (BS) FDD: Radio transmission and Reception," Version 6.12.0, Mar. 2006.
- 2. 3GPP Technical Specification TS 25.101, "UE Radio transmission and Reception (FDD)," Version 6.11.0, Mar. 2006.
- 3. Recommendation ITU-R M.1225, Guidelines for evaluation of radio transmission technologies for IMT-2000, 1997.

HSUPA_BER_Throughput

Description: EDCH BER and throughput calculator **Library:** HSUPA, Measurement

Parameters

Name	Description	Default	Symbol	Туре	Range
EDCH_Category	FDD E-DCH physical layer categories: Category 1, Category 2, Category 3, Category 4, Category 5, Category 6, Category 7	Category 6		enum	
TransBlockSize	Transport block size	2706	L	int	[1,max transport block size]†
ТТІ	Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms		enum	
MaxRSN	Maximum retransmission sequence number	3		int	[0,3]
TransBlockIgnored	Transport block Ignored due to system delay	1		int	[0,5]

⁺ Please refer to table of FDD E-DCH physical layer categories.

Pin Inputs

Pin	Name	Description	Signal Type
1	Rcvd	received bits	int
2	Parity	CRC result of received bits	int
3	RSN	retransmission sequence number	int
4	Ref	reference bits	int

Pin Outputs

Pin	Name	Description	Signal Type
5	R	throughput in kbps	real
6	R_Pct	throughput in percent	real
7	BER	bit error rate	real
8	PER	packet error rate	real

Notes/Equations

- 1. This model is used to estimate throughput as well as BER/PER vs. retransmission time of HSUPA uplink.
- 2. Each firing, MaxRSN+1 BER and PER tokens, one R and R_Pct tokens are produced when TransBlockSize Rcvd and Ref tokens, one parity token and one RSN token consumed.
- 3. All the input pins are optional. But at any time either pin parity or both pin Rcvd and Ref must be connected. If parity is connected, throughput is estimated. If pin Rcvd and Ref are connected, BER/PER is calculated.
- 4. When BER/PER is calculated, if RSN is connected, BER/PER vs. retransmission is calculated; if RSN is not connected, retransmission is not taken into account. That is,

Advanced Design System 2011.01 - HSUPA Design Library

in this way this model can be used as common BER/FER calculator.

5. R_Pct is number of packet with Parity 1 divided by the total number of Parity received. R is R_Pct multiplied by information bit rate.

References

- 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 6.7.0, Dec. 2005.
 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD),"
- Version 6.7.0, Dec. 2005.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 6.5.0, Mar. 2006.
- 4. 3GPP Technical Specification TS 25.104, "UTRA (BS) FDD: Radio transmission and Reception," Version 6.12.0, Mar. 2006.
- 5. 3GPP Technical Specification TS 25.141, "Base station conformance test," Version 6.13.0, Mar. 2006.

Description: HSUPA information bit generator **Library:** HSUPA, Signal Sources

Parameters

Name	Description	Default	Symbol	Туре	Range
EDCH_Category	FDD E-DCH physical layer categories: Category 1, Category 2, Category 3, Category 4, Category 5, Category 6, Category 7	Category 6		enum	
TransBlockSize	Transport block size	2706	L	int	[1,max transport block size]†
TTI	Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms		enum	
MaxRSN	Maximum retransmission sequence number	3		int	[0,3]
HARQ_PrcssMode	Way to setting number of HARQ: Depending on TTI, User defined	Depending on TTI		enum	
NumHARQ	Number of HARQ processes	4		int	[2,8]
DataPattern	Source data pattern: Random, PN9, PN15, Repeat Bits	Random		enum	
RepeatBitValue	Repeating data value	0x0001		int	[0, 65535]
RepeatBitPeriod	Repeating data period	2		int	[1, 16]

⁺ Please refer to table of FDD E-DCH physical layer categories.

Pin Inputs

Pin	Name	Description	Signal Type
1	ARQ	automatic repeat request	int
D1.	A	L _	

Pin Outputs

Pin	Name	Description	Signal Type
2	Output	output	int
3	RSN	retransmission sequence number	int

Notes/Equations

1. This model is used to generate information bits packet by packet for use of HSUPA uplink transport channel. HARQ process is also implemented in this model. Each firing, TransBlockSize Output tokens and one RSN token are generated when one ARQ token consumed. Note that ARQ pin is optional. When no output pin connected to it, no ARQ token is consumed.

Advanced Design System 2011.01 - HSUPA Design Library

- 2. The input value of ARQ is better to be in the range of but not limited to the set of 0 and 1. If the input of ARQ is 0, it means NACK and the correspondent packet is not received correctly. Otherwise, it means ACK and the correspondent packet is received correctly.
- 3. If ACK is received, UE will transmit new packet within current HARQ process. If NACK is received, UE will re-transmit the packet. The maximum re-transmission number is determined by parameter MaxRSN. if the re-transmission number is larger than MaxRSN, then this packet will be discarded and a new packet will be transmitted.
- 4. The delay for ARQ is fixed to NumHARQ * TTI. If HARQ_PrcssMode is set to *Depending on TTI*, NumHARQ is set to 8 for TTI 2ms and 4 for TTI 10 ms. Otherwise, the user can set the value of NumHARQ. For example, if 2ms TTI is used, UE will get the ARQ signal of the first packet when it send the ninth packet.
- 5. The output of RSN is the retransmission number of current packet. If it is a new packet, RSN is 0; if not, RSN can be 1, 2,..., MaxRSN incrementally.
- 6. For the DataPattern parameter:
 - If Random is selected, random bits is generated.
 - If PN9 is selected, a 511-bit pseudo-random test pattern is generated according to CCITT Recommendation 0.153
 - If PN15 is selected, a 32767-bit pseudo-random test pattern is generated according to CCITT Recommendation 0.151
 - If Repeat Bits is selected, the data pattern depends on RepeatBitValue and RepeatBitPeriod. The RepeatBitPeriod length of LSB of RepeatBitValue will be repeated and filled in the data packet.

References

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.6.0, May 2008.
- 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 7.9.0, Sep. 2008.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sep. 2008.
- 4. 3GPP Technical Specification TS 25.104, "Base Station (BS) radio transmission and reception (FDD)," Version 7.10.0, Mar. 2008.
- 5. 3GPP Technical Specification TS 25.141, "Base station (BS) conformance testing (FDD)," V7.11.0, Mar. 2008.
- 6. 3GPP Technical Specification TS 25.306, "UE Radio Access capabilities," Version 7.8.0, Sep. 2008.
- 7. CCITT, Recommendation 0.151(10/92).
- 8. CCITT, Recommendation 0.153(10/92).

HSUPA_ChDecode

Description: EDCH turbo decoder **Library:** HSUPA, Demultiplexers & Decoders

Parameters

Name	Description	Default	Symbol	Туре	Range
EDCH_Category	FDD E-DCH physical layer categories: Category 1, Category 2, Category 3, Category 4, Category 5, Category 6, Category 7	Category 6		enum	
TransBlockSize	Transport block size	2706	L	int	[1,max transport block size]†
TTI	Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms		enum	
TC_Iteration	Turbo code decoder iteration number	4		int	[1,10]
TC_Alfa	Alfa of lowpass filter	0.4		real	[0,1.0)

⁺ Please refer to table of FDD E-DCH physical layer categories.

Pin Inputs

Pin	Name	Description	Signal	Туре

1 Input input real

Pin Outputs

Pin Name Description Signal Type

2 Output output int

Notes/Equations

- 1. This model is used to implement channel decoding in one code block for HSUPA uplink.
- Each firing, (code block size) Output tokens are generated while (code block size * 3 + 12) Input tokens consumed.
- 3. A simple way to get the value of code block number, code block size and the number of padding bits and their relationship with the value of TransBlockSize is just to run the model HSUPA_CodeBlkSeg with wanted TransBlockSize in a minimal runnable design. The information will then be displayed in the simulation window.
- 4. A iterative Turbo MAP decoder using modified BAHL et al. algorithm [4][5] is used in this model. The iterative number can be set from 1 through to 10 through parameter TC_Iteration.
- 5. Alfa low-pass filter can be used to lower the variance of estimation of noise power, when noise power does not vary significantly block by block.
- 6. **P**_{noise} = $P_{noise} \times (1-a) + P_{noise_current_block} \times a$ Where a can be set by parameter TC Alfa.

References

1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 6.7.0, Dec. 2005.

- 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 6.7.0, Dec. 2005.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 6.5.0, Mar. 2006.
- 4. L.R. Bahl, J. Cocke, F. Jeinek and J. Raviv. "Optimal decoding of linear codes for minimizing symbol error rate." IEEE Trans. Inform. Theory, vol. IT-20. pp.248-287, March 1974.
- 5. C. Berrou and A. Glavieus. "Near optimum error correcting coding and decoding: turbo-codes", IEEE Trans. Comm., pp. 1261-1271, Oct. 1996.

HSUPA_ChEncode

Description: EDCH turbo encoder **Library:** HSUPA, Multiplexers & Coders

Parameters

Name	Description	Default	Symbol	Туре	Range
EDCH_Category	FDD E-DCH physical layer categories: Category 1, Category 2, Category 3, Category 4, Category 5, Category 6, Category 7	Category 6		enum	
TransBlockSize	Transport block size	2706	L	int	[1,max transport block size]†
TTI	Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms		enum	

⁺ Please refer to table of FDD E-DCH physical layer categories.

Pin Inputs

Pin	Name	Description	Signal Type		
1	Input	input	int		
Pin Outputs					

Pin	Name	Description	Signal Type
2	Output	output	int

Notes/Equations

- 1. This model is used to implement turbo code defined in 4.8.3 in [2] for HSUPA uplink.
- 2. Each firing, (code block size * 3 + 12) Output tokens are generated while (code block size) Input tokens consumed.
- 3. A simple way to get the value of the code block number, code block size and the number of padding bits and their relationship with the value of TransBlockSize is to run the model HSUPA_CodeBlkSeg with wanted TransBlockSize in a minimal runnable design. The information will then be displayed in the simulation window.

References

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 6.7.0, Dec. 2005.
- 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 6.7.0, Dec. 2005.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 6.5.0, Mar. 2006.

HSUPA_CodeBlkDeseg

Description: EDCH code block desegmentation **Library:** HSUPA, Demultiplexers & Decoders

Parameters

Name	Description	Default	Symbol	Туре	Range
EDCH_Category	FDD E-DCH physical layer categories: Category 1, Category 2, Category 3, Category 4, Category 5, Category 6, Category 7	Category 6		enum	
TransBlockSize	Transport block size	2706	L	int	[1,max transport block size]†
TTI	Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms		enum	

⁺ Please refer to table of FDD E-DCH physical layer categories.

Pin Inputs

Pin	Name	Description	Signal Type			
1	Input	input	int			
Pin Outputs						

Pin	Name	Description	Signal Type
2	Output	output	int

Notes/Equations

- 1. This model is used to combine the decoded bits of each code block and recover the transport block.
- 2. This model implements the converse operation of HSUPA_CodeBlkSeg. For more information, see *HSUPA_CodeBlkSeg* (hsupa).

References

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 6.7.0, Dec. 2005.
- 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 6.7.0, Dec. 2005.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 6.5.0, Mar. 2006.
HSUPA_CodeBlkSeg

Description: EDCH code block segmentation **Library:** HSUPA, Multiplexers & Coders

Parameters

Name	Description	Default	Symbol	Туре	Range
EDCH_Category	FDD E-DCH physical layer categories: Category 1, Category 2, Category 3, Category 4, Category 5, Category 6, Category 7	Category 6		enum	
TransBlockSize	Transport block size	2706	L	int	[1,max transport block size]†
TTI	Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms		enum	

⁺ Please refer to table of FDD E-DCH physical layer categories.

Pin Inputs

Pin	Name	Description	Signal Type		
1	Input	input	int		
Pin Outputs					

Pin	Name	Description	Signal Type
2	Output	output	int

Notes/Equations

- 1. This model is used to segment uplink transport block into suitable size to fit the encoder.
- 2. Each firing, TransBlockSize+24 Input tokens are consumed. The Output tokens generated are generally the same as the Input tokens consumed. But padding bits may be appended depending on the algorithm described in 4.8.2 in [2].
- 3. If no padding bits are appended, the input and output of this model are the same.
- 4. A simple way to get the value of code block number, code block size and the number of padding bits and their relationship with the value of TransBlockSize is to run this model in a minimal runnable design. The information will then be displayed in the simulation window.

- 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 6.7.0, Dec. 2005.
 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD),"
- 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 6.7.0, Dec. 2005.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 6.5.0, Mar. 2006.

HSUPA_Deinterleaver

Description: EDCH deinterleaver **Library:** HSUPA, Demultiplexers & Decoders

Parameters

Name	Description	Default	Symbol	Туре	Range
EDCH_Category	FDD E-DCH physical layer categories: Category 1, Category 2, Category 3, Category 4, Category 5, Category 6, Category 7	Category 6		enum	
TransBlockSize	Transport block size	2706	L	int	[1,max transport block size]†
ТТІ	Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms		enum	
PuncLimit	Puncturing limit for uplink	0.468		real	[PLmax , 1]‡
maxNumElement_Set0	maximum number of element in Set0	11		int	[1,11]

[†]Please refer to table of FDD E-DCH physical layer categories.

‡PLmax is 0.33 for Category 6 and is 0.44 for all other categories.

Pin Inputs

Pin	Name	Description	Signal Type
1	Input	input	real
Pin	Output	·c	

-		

Pin	Name	Description	Signal Type
2	Output	output	real

Notes/Equations

- 1. This model is used to implement channel de-interleaving for HSUPA uplink. Function of this model is exactly converse of that of HSUPA_Interleaver.
- 2. For more information, see *HSUPA_Interleaver* (hsupa).

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 6.7.0, Dec. 2005.
- 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 6.7.0, Dec. 2005.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 6.5.0, Mar. 2006.

HSUPA_DL_Rake

Description: HSUPA downlink Rake receiver **Library:** HSUPA, Receivers

Parameters

Name	Description	Default	Туре	Range
ScrambleCode	index of scramble code	0	int	[0,512] for downlink; [0, 16777215] for uplink
ScrambleOffset	scramble code offset	0	int	[0,15]
ScrambleType	scramble code type: normal, right, left	normal	enum	
SampleRate	sample rate	8	int	[1,256]
MaxDelaySample	maximum delay boundary, in terms of samples	0	int	[0,2559] for RAKE receiver; [0,102400] in other models
ChannelType	select the channel type to be processed: CH_GAUSSIAN, CH_FADING	CH_GAUSSIAN	enum	
ChannelInfo	fading channel information source: Known, Estimated	Known	enum	
ChannelInfoOffset	offset between spread code and channel information in terms of sample	0	int	[0,MaxDelaySample]
PathSearch	path search frequency: EverySlot, Once	Once	enum	
SearchMethod	path search method: Coherent, NonCoherent, Combined	Coherent	enum	
SearchSlotsNum	number of slots for path search	1	int	[1,12]
PathNum	number of Rake fingers	1	int	[1,6]
PathDelaySample	delay for each finger, in terms of samples	0	int array	[0,MaxDelaySample]; array size shall be equal to PathNum
EstSlotsNum	Number of slots for channel estimation	1	int	[1,3]
EHI_ERG_SpreadCode	Spreading code for E- HICH and E-RGCH	19	int	[0,127]
EAGCH_SpreadCode	Spreading code for E- AGCH	100	int	[0,255]
RxEHICH_ERGCH	Switch of EHICH and/or ERGCH demodulation: OFF, ON	ON	enum	
RxEAGCH	Switch of EAGCH demodulation: OFF, ON	ON	enum	

Pin Inputs

Pin	Name	Description	Signal Type
1	inChip	input data stream	complex
2			11.1

2 inChM input known channel information multiple complex

Pin Outputs

Pin	Name	Description	Signal Type
3	HI_RG	E-HICH or E-RGCH	real
4	EAGCH_Sym	absolute grant value index of E-AGCH	real
5	symCPI	symbols of CPICH	real
6	outChM	estimated channel information	multiple complex

- 1. This model is used to demodulate and despread 3GPP/HSUPA downlink signals (E-HICH, E-RGCH, and E-AGCH) with chip rate at 3.84 MHz. These signals may have multipath fading channel and additive Gaussian noise corruption.
- 2. To despread and demodulate a CDMA signal, the channel information and path delay information must be determined. Errors in channel estimation and path search deteriorate the receiver performance.
- 3. The signal processing flow inside the model is:
 - Input data until slots specified by SearchSlotsNum are received
 - Slot index identification
 - SCH code index identification
 - IQ offset correction, to eliminate any DC component
 - Multipath search
 - Channel estimate for each path
 - Decoding and despreading of individual path
 - Multipath combining
 - Output decoded data to align at the slot boundary
 - Output channel information (slots delayed are specified by SearchSlotsNum).
- 4. This model can be configured to work under ideal conditions; in other words, the real time channel information can be input from the input pin and the path delay information can be set by PathDelaySample. ChannelInfo determines if channel information is pin input or estimated inside the model. The delay for each path is expressed in terms of samples as individual elements in the array. If path delay is known from the parameter, it is recommended to set the parameter SearchSlotsNum to 1, in order to save the simulation time.
- 5. If the first element in PathDelaySample is zero, the path searching is performed inside the receiver model. Otherwise, the numbers specified by PathDelaySample are taken as the delays for each path.
- 6. The path searching is performed by correlating the received signals with the spreading code specified in a window whose size is set by MaxDelaySample. The correlations at different offsets are ranked; the top ones are assumed to be the offsets where the paths could occur.
- 7. If SearchMethod = Coherent, correlation will be performed at the pilot bits only. If the SearchMethod = NonCoherent, correlation will be performed on the data field. Note that the coherent correlation obtained over pilot bits is unbiased, while the non-coherent correlation is biased. If SearchMethod = Combined, the coherent and non-coherent correlations are summed as the matrix for path resolution.
- 8. Another factor that impacts the correlation is the SearchSlotsNum parameter. This parameter sets the number of slots over which the correlation is accumulated. More

slots are necessary for a reliable path resolution for signals with noise contamination. Usually, six slots are required if Eb/N0 is 2 dB. The user must determine the appropriate slot number and search method for the best trade-off between accuracy and speed.

- 9. If the path delay is fixed, the path search is necessary only at the start of simulation. In this case, set PathSearch=Once to save simulation time. Otherwise, the path search will be performed for each slot received to update the dynamic path delay information.
- 10. Channel estimation varies according to channel type.
 - If ChannelType = CH_GAUSSIAN, the channel is assumed to be time-invariant and the IQ phase shift is estimated using the pilot field of the signals received so far.
 - If ChannelType = CH_FADING, channel characteristics are assumed to be timevariant and more complicated channel estimation must be used. A simple channel estimation is used that takes the fading characteristic averaged over the pilot field of the current slot as the channel information for the entire slot.
- 11. Generally the pilot in current slots is enough for channel estimation. But if Eb/N0 is very low, while channel status varies relatively slowly, more slots are necessary for a reliable channel estimation. EstSlotsNum can be used to set number of slots used for channel estimation.
- 12. Channel information that is estimated on CPICH or known from input pins is output from pin outChM for reference. Each firing, 2560 tokens are produced as the channel information for the chips of the current demodulation slot.

0 Note

If ChannelInfo = Estimated, CPICH must be included in the received signal for the Rake receiver to make the inside channel estimation.

- 13. All paths are combined assuming that all paths are useful for improving the decoding reliability. In some cases, paths with low SNR are actually harmful to the final SNR improvement. The user must set PathNum for better decoding performance in multipath conditions.
- 14. This model can be used to decode E-AGCH and E-HICH / E-RGCH. These channels are assumed to be time-aligned. If decoding of a specific channel is not necessary, it can be disabled by relative parameters to reduce simulation time.
- 15. Each firing, the number of input tokens is 2560 × SampleRate. There is a delay in terms of slots associated with the decoded information. The results are output after the number of firings equals SearchSlotsNum.
- 16. If the 3GPP/HSUPA signal is S(t), this signal may be delayed t1 by some filters (such as the Tx RC filters). So, the delayed signal is S(t-t1) and the signal from 0 to t1 is zero and the real 3GPP signal transmission starts from t1. When the delayed signals pass through a fading channel, the fading factor is applied to the overall signals starting from time 0. The offset t1 must be known if the receiver of the channel information is input from outside; this offset is expressed in terms of samples.

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.10.0, Dec. 2008.
- 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 7.9.0, Sept. 2008.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sept. 2008.

HSUPA_DL_Receiver

Description: HSUPA downlink receiver Library: HSUPA, Receivers

Parameters

Name	Description	Default	Symbol	Туре	Range
TTI	Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms		enum	
EHICH_SqnIdx	Signature sequence index of EHICH	0		int	[0,39]
ERGCH_SqnIdx	Signature sequence index of ERGCH	1		int	[0,39]
EHI_ERG_SpreadCode	Spreading code for E-HICH and E- RGCH	19		int	[0,127]
EAGCH_SpreadCode	Spreading code for E-AGCH	100		int	[0,255]
ERNTI	E-DCH radio network temporary identifier	19		int	[0,65535]
ScrambleOffset	Scramble code offset	0		int	[0,15]
ScrambleType	Scramble code type: normal, right, left	normal		enum	
ScrambleCode	Index of scramble code	0		int	[0,512] for downlink; [0, 16777215] for uplink
SamplesPerChip	Samples per chip	8	S	int	[2,32]
MaxDelaySample	Maximum delay boundary, in terms of samples	0		int	[0,2559] for RAKE receiver; [0,102400] in other models
ChannelType	Select the channel type to be processed: CH_GAUSSIAN, CH_FADING	CH_GAUSSIAN		enum	
ChannelInfo	Fading channel information source: Known, Estimated	Known		enum	
ChannelInfoOffset	Offset between spread code and channel information in terms of sample	0		int	[0,MaxDelaySample]
PathSearch	Path search frequency: EverySlot, Once	Once		enum	
SearchMethod	Path search method: Coherent, NonCoherent,	Coherent	12	enum	

	Combined			
SearchSlotsNum	Number of slots for path search	1	int	[1,12]
PathNum	Number of Rake fingers	1	int	[1,6]
PathDelaySample	Delay for each finger, in terms of samples	0	int array	[0,MaxDelaySample]; array size shall be equal to PathNum
RxEHICH_ERGCH	Switch of EHICH and/or ERGCH demodulation: OFF, ON	ON	enum	
RxEAGCH	Switch of EAGCH demodulation: OFF, ON	ON	enum	
Threshold_EHICH	Threshold for decoding E-HICH	-32	real	(-∞,∞)
Threshold_ERGCH	Threshold for decoding E-RGCH	-20	real	(-∞,∞)

Advanced Design System 2011.01 - HSUPA Design Library

Pin Inputs

Pin	Name	Description	Signal Type
1	Input	input	complex
2	CH_M	channel information	multiple complex

Pin Outputs

Pin	Name	Description	Signal Type
3	EHICH	E-HICH	real
4	ERGCH	E-RGCH	real
5	EAGCH	E-AGCH	int

- 1. This subnetwork model is used to demodulate and decode HSUPA related downlink signals, i.e., E-DCH Absolute Grant Channel (E-AGCH), E-DCH Hybrid ARQ Indicator Channel (E-HICH), and E-DCH Relative Grant Channel (E-RGCH).
- 2. The schematic for this subnetwork is shown below:

- 3. To despread and demodulate a CDMA signal, the channel information and path delay information must be determined. Errors in channel estimation and path search deteriorate the receiver performance.
- 4. This model can be configured to work under ideal conditions; in other words, the real time channel information can be input from input pin and the path delay information can be set by PathDelaySample. ChannelInfo determines if channel information is pin

input or estimated inside the model. The delay for each path is expressed in terms of samples as individual elements in the array.

If path delay is known from the parameter, it is recommended to set the parameter SearchSlotsNum to 1, in order to save the simulation time.

- 5. If the first element in PathDelaySample is zero, the path searching is performed inside the receiver model. Otherwise, the numbers specified by PathDelaySample are taken as the delays for each path.
- 6. The path searching is performed by correlating the received signals with the spreading code specified in a window whose size is set by MaxDelaySample. The correlations at different offsets are ranked; the top ones are assumed to be the offsets where the paths could occur.
- 7. If SearchMethod = Coherent, correlation will be performed at the pilot bits only. If the SearchMethod = NonCoherent, correlation will be performed on the data field. Note that the coherent correlation obtained over pilot bits is unbiased, while the non-coherent correlation is biased. If SearchMethod = Combined, the coherent and non-coherent correlations are summed as the matrix for path resolution.
- 8. Another factor that impacts the correlation is the SearchSlotsNum parameter. This parameter sets the number of slots over which the correlation is accumulated. More slots are necessary for a reliable path resolution for signals with noise contamination. Usually, 6 slots are required if Eb/No is 2 dB. The user must determine the appropriate slot number and search method for the best trade-off between accuracy and speed.
- 9. If the path delay is fixed, the path search is necessary only at the start of simulation. In this case, set PathSearch=Once to save simulation time. Otherwise, the path search will be performed for each slot received to update the dynamic path delay information.
- 10. Channel estimation varies according to channel type.
 - If ChannelType = CH_GAUSSIAN, the channel is assumed to be time-invariant and the IQ phase shift is estimated using the pilot field of the signals received so far.
 - If ChannelType = CH_FADING, channel characteristics are assumed to be timevariant and more complicated channel estimation must be used. A simple channel estimation is used that takes the fading characteristic averaged over the pilot field of the current slot as the channel information for the entire slot.
- 11. Channel information that is estimated on CPICH or known from input pins.

0 Note

If ChannelInfo = Estimated, CPICH must be included in the received signal for the Rake receiver to make the inside channel estimation.

- 12. All paths are combined assuming that all paths are useful for improving the decoding reliability. In some cases, paths with low SNR are actually harmful to the final SNR improvement. The user must set PathNum for better decoding performance in multipath conditions.
- 13. This model can be used to decode E-AGCH and E-HICH / E-RGCH. These channels are assumed to be time-aligned. If decoding of a specific channel is not necessary, it can be disabled by relative parameters to reduce simulation time.
- 14. There is a delay in terms of slots associated with the decoded information, and it varies for different SearchSlotsNum and TTI combinations.
- 15. For more information regarding the Rake receiver and different channel decoders, please refer to the documents of HSUPA_DL_Rake, HSUPA_EAGCH_Decode, and HSUPA_EHICH_ERGCH_Decode respectively.

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.10.0, Dec. 2005.
- 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD),"

Advanced Design System 2011.01 - HSUPA Design Library

Version 7.9.0, Sept. 2008.
3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sept. 2008.

HSUPA_DL_ReceiverRF

Description: HSUPA downlink receiver Library: HSUPA, Receivers

Parameters

Name	Description	Default	Symbol	Unit	Туре	Range
RLoad	Input resistance	DefaultRLoad		Ohm	real	(0,∞)
FCarrier	Carrier frequency	1950MHz		Hz	real	(0,∞)
Phase	Reference phase in degrees	0.0		deg	real	(-∞,∞)
SamplesPerChip	Samples per chip	8	S		int	[2,32]
RRC_FilterLength	RRC filter length (chips)	16			int	[2,128]
ExcessBW	Excess bandwidth of raised cosine filters	0.22			real	(0.0,1.0)
ScrambleCode	Index of scramble code	0			int	[0,512] for downlink; [0, 16777215] for uplink
ScrambleOffset	Scramble code offset	0			int	[0,15]
ScrambleType	Scramble code type: normal, right, left	normal			enum	
ТТІ	Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms			enum	
EHICH_SqnIdx	Signature sequence index of EHICH	0			int	[0,39]
ERGCH_SqnIdx	Signature sequence index of ERGCH	1			int	[0,39]
EHI_ERG_SpreadCode	Spreading code for E-HICH and E-RGCH	19			int	[0,127]
EAGCH_SpreadCode	Spreading code for E-AGCH	100			int	[0,255]
ERNTI	E-DCH radio network temporary identifier	19			int	[0,65535]
MaxDelaySample	Maximum delay boundary, in terms of samples	0			int	[0,2559] for RAKE receiver; [0,102400] in other models
1			46			

	Advar	ced Design System	2011.01 - HSUPA I	Design Library
ChannelType	Select the channel type to be processed: CH_GAUSSIAN, CH_FADING	CH_GAUSSIAN	enum	
ChannelInfo	Fading channel information source: Known, Estimated	Known	enum	
ChannelInfoOffset	Offset between spread code and channel information in terms of sample	0	int	[0,MaxDelaySample]
PathSearch	Path search frequency: EverySlot, Once	Once	enum	
SearchMethod	Path search method: Coherent, NonCoherent, Combined	Coherent	enum	
SearchSlotsNum	Number of slots for path search	1	int	[1,12]
PathNum	Number of Rake fingers	1	int	[1,6]
PathDelaySample	Delay for each finger, in terms of samples	0	int array	[0,MaxDelaySample]; array size shall be equal to PathNum
RxEHICH_ERGCH	Switch of EHICH and/or ERGCH demodulation: OFF, ON	ON	enum	
RxEAGCH	Switch of EAGCH demodulation: OFF, ON	ON	enum	
Threshold_EHICH	Threshold for decoding E- HICH	-32	real	(-∞,∞)
Threshold_ERGCH	Threshold for decoding E- RGCH	-20	real	(-∞,∞)

Pin Inputs

Pin	Name	Description	Signal Type
1	RF	input	timed
2	CH_M	channel information	multiple complex

PIN	Outputs	

3EHICHE-HICHreal4ERGCHE-RGCHreal5EAGCHE-AGCHint	Pin	Name	Description	Signal Type
4 ERGCH E-RGCH real 5 EAGCH E-AGCH int	3	EHICH	E-HICH	real
5 EAGCH E-AGCH int	4	ERGCH	E-RGCH	real
	5	EAGCH	E-AGCH	int

Notes/Equations

1. This subnetwork model is used to demodulate and decode HSUPA related downlink RF signals, i.e., E-DCH Absolute Grant Channel (E-AGCH), E-DCH Hybrid ARQ Indicator Channel (E-HICH), and E-DCH Relative Grant Channel (E-RGCH).

Advanced Design System 2011.01 - HSUPA Design Library 2. The schematic for this subnetwork is shown below:

- 3. To despread and demodulate a CDMA signal, the channel information and path delay information must be determined. Errors in channel estimation and path search deteriorate the receiver performance.
- 4. This model can be configured to work under ideal conditions; in other words, the real time channel information can be input from input pin and the path delay information can be set by PathDelaySample. ChannelInfo determines if channel information is pin input or estimated inside the model. The delay for each path is expressed in terms of samples as individual elements in the array.

If path delay is known from the parameter, it is recommended to set the parameter SearchSlotsNum to 1, in order to save the simulation time.

- 5. If the first element in PathDelaySample is zero, the path searching is performed inside the receiver model. Otherwise, the numbers specified by PathDelaySample are taken as the delays for each path.
- 6. The path searching is performed by correlating the received signals with the spreading code specified in a window whose size is set by MaxDelaySample. The correlations at different offsets are ranked; the top ones are assumed to be the offsets where the paths could occur.
- 7. If SearchMethod = Coherent, correlation will be performed at the pilot bits only. If the SearchMethod = NonCoherent, correlation will be performed on the data field. Note that the coherent correlation obtained over pilot bits is unbiased, while the non-coherent correlation is biased. If SearchMethod = Combined, the coherent and non-coherent correlations are summed as the matrix for path resolution.
- 8. Another factor that impacts the correlation is the SearchSlotsNum parameter. This parameter sets the number of slots over which the correlation is accumulated. More slots are necessary for a reliable path resolution for signals with noise contamination. Usually, six slots are required if Eb/N0 is 2 dB. The user must determine the appropriate slot number and search method for the best trade-off between accuracy and speed.
- 9. If the path delay is fixed, the path search is necessary only at the start of simulation. In this case, set PathSearch=Once to save simulation time. Otherwise, the path search will be performed for each slot received to update the dynamic path delay information.
- 10. Channel estimation varies according to channel type.
 - If ChannelType = CH_GAUSSIAN, the channel is assumed to be time-invariant and the IQ phase shift is estimated using the pilot field of the signals received so far.
 - If ChannelType = CH_FADING, channel characteristics are assumed to be timevariant and more complicated channel estimation must be used. A simple channel estimation is used that takes the fading characteristic averaged over the pilot field of the current slot as the channel information for the entire slot.
- 11. Channel information that is estimated on CPICH or known from input pins.

0 Note

If ChannelInfo = Estimated, CPICH must be included in the received signal for the Rake receiver to make the inside channel estimation.

12. All paths are combined assuming that all paths are useful for improving the decoding

reliability. In some cases, paths with low SNR are actually harmful to the final SNR improvement. The user must set PathNum for better decoding performance in multipath conditions.

- 13. This model can be used to decode E-AGCH and E-HICH / E-RGCH. These channels are assumed to be time-aligned. If decoding of a specific channel is not necessary, it can be disabled by relative parameters to reduce simulation time.
- 14. There is a delay in terms of slots associated with the decoded information, and it varies for different SearchSlotsNum and TTI combinations.
- 15. For more information regarding the Rake receiver and different channel decoders, please see HSUPA_DL_Rake (hsupa), HSUPA_EAGCH_Decode (hsupa), and HSUPA_EHICH_ERGCH_Decode (hsupa).

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 6.7.0, Dec. 2005.
- 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 6.7.0, Dec. 2005.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 6.5.0, Mar. 2006.
- 4. 3GPP Technical Specification TS 25.214, "Physical layer procedures (FDD)," Version 6.8.0, Mar. 2006.
- 5. 3GPP Technical Specification TS 25.101, "UE Radio transmission and Reception (FDD)," Version 6.11.0, Mar. 2006.

HSUPA_DL_Source

Description: HSUPA downlink source **Library:** HSUPA, Signal Sources

Parameters

Transmission time interval: TTI 2ms, TTI 10ms E-HICH signal pattern E-RGCH signal	TTI 2ms 1.0	enum	
E-HICH signal pattern E-RGCH signal	1.0	int	
E-RGCH signal		array	[-1, +1]
pattern	1.0	int array	[-1, +1]
Signature sequence index of EHICH	0	int	[0,39]
Signature sequence index of ERGCH	1	int	[0,39]
Spreading code for E- HICH and E-RGCH	19	int	[0,127]
Spreading code for E- AGCH	100	int	[0,255]
E-DCH radio network temporary identifier	19	int	[0,65535]
EHICH power gain in dB	1.0	real	(-∞,∞)
ERGCH power gain in dB	1.0	real	(-∞,∞)
EAGCH power gain in dB	1.0	real	(-∞,∞)
Scramble code offset	0	int	[0,15]
Scramble code type: normal, right, left	normal	enum	
Index of scramble code	0	int	[0,512] for downlink; [0, 16777215] for uplink
Reference measurement channel:	DL_REF_12_2	enum	
	ERGCH power gain in dB EAGCH power gain in dB Scramble code offset Scramble code type: normal, right, left Index of scramble code Reference measurement channel:	ERGCH power gain in dB1.0EAGCH power gain in dB1.0Scramble code offset0Scramble code type: normal, right, leftnormalIndex of scramble code0Reference measurement channel:DL_REF_12_2	ERGCH power gain in dB1.0realEAGCH power gain in dB1.0realScramble code offset Scramble code type: normal, right, left0intIndex of scramble code0intReference measurement channel:DL_REF_12_2enum

	DL_REF_12_2, DL_REF_64, DL_REF_144, DL_REF_384		- ISUFA	
DPCH_SpreadCode	Spread code index of DPCH	127	int	[0,127] for 12.2kbps; [0,31] for 64kbps; [0,15] for 144kbps; [0,7] for 384kbps
CPICH_SpreadCode	Spread code index of CPICH	2	int	[0,255]
PICH_SpreadCode	Spread code index of PICH	16	int	[0,255]
SCCPCH_SlotFormat	SCCPCH slot format	0	int	[0,17]
SCCPCH_SpreadCode	Spread code index of SCCPCH	3	int	[0,SpreadFactor- 1]; SpreadFactor is set by SCCPCH_SlotFormat
DPCH_GainFactor	DPCH Ec over Ior in dB, valid only if PowerReference is Ior	1.0	real	(-∞,∞)
P_CPICH_GainFactor	Primary CPICH power gain in dB	1.0	real	(-∞,∞)
S_CPICH_GainFactor	Secondary CPICH power gain in dB	1.0	real	(-∞,∞)
PCCPCH_GainFactor	PCCPCH power gain in dB	1.0	real	(-∞,∞)
SCCPCH_GainFactor	SCCPCH power gain in dB	1.0	real	(-∞,∞)
P_SCH_GainFactor	Primary SCH power gain in dB	1.0	real	(-∞,∞)
S_SCH_GainFactor	Secondary SCH power gain in dB	1.0	real	(-∞,∞)
PICH_GainFactor	PICH power gain in dB	1.0	real	(-∞,∞)
OCNS_GainFactor	OCNS gain in dB, valid only if PowerReference is DPCH_Ec	1.0	real	(-∞,∞)
OCNS_ChannelNum	OCNS channel number	16	int	[1,512]
OCNS_PowerArray	OCNS channel power array in dB	-1 -3 -3 -5 -2 -4 -8 -7 -4 -6 -5 -9 -10 -8 -6 0	real array	$(-\infty,\infty)$; the array size shall be equal to OCNS_ChannelNum
OCNS_SpreadFactorArray	OCNS spread factor array	128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128	int array	2 ⁿ , n=1,,9; array size shall be equal to OCNS_ChannelNum
OCNS_SpreadCodeArray	OCNS spread code array	2 11 17 23 31 38 47 55 62 69 78 85 94 125 113 119	int array	[0,OCNS_SpreadFactorArray- 1]; array size shall be equal to OCNS_ChannelNum; code conflict is checked
OCNS_DataPatternArray	OCNS data pattern array: 0-random, 1- PN9, 2-PN15, 3- Repeat Bits	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	int array	[0,1,2,3]; array size shall be equal to OCNS_ChannelNum
OCNS_RepBitValueArray	OCNS repeat bit value array	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	int array	[0,255]; array size shall be equal to OCNS_ChannelNum
OCNS_tOffsetArray	OCNS time offset in terms of 256 chips	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	int array	[0,149]; array size shall be equal to OCNS_ChannelNum
1		51		1

C 2011.01 USUDA Dosig

	Advanced Desig	gn System 2011.01	- HSUPA	Design Library
DTCHDataPattern	DTCH source data pattern: DTCH_random, DTCH_PN9, DTCH_PN15, DTCH_bits_repeat, DTCH_user_file	DTCH_random	enum	
DTCHRepBitValue	DTCH repeating data value	0xff	int	[0,255]
DTCHUserFileName	DTCH user-defined data file name	datafile.txt	filename	
DCCHDataPattern	DCCH source data pattern: DCCH_random, DCCH_PN9, DCCH_PN15, DCCH_bits_repeat, DCCH_user_file	DCCH_random	enum	
DCCHRepBitValue	DCCH repeating data value	0xff	int	[0,255]
DCCHUserFileName	DCCH user-defined data file name	datafile.txt	filename	
TPCDataPattern	Source data pattern: TPC_random, TPC_PN9, TPC_PN15, TPC_bits_repeat, TPC_user_file	TPC_random	enum	
TPCRepBitValue	TPC repeating data value	0xff	int	[0,255]
TPCUserFileName	TPC user-defined data file name	datafile.txt	filename	

Pin Outputs

Pin	Name	Description	Signal Type
1	Output	output	complex
2	STTD	space time transmit diversity output	complex
3	DTCH	DTCH data	int
4	DCCH	DCCH data	int
5	EHICH	E-HICH data	real
6	ERGCH	E-RGCH data	real
7	EAGCH	E-AGCH	int

- This subnetwork model is used to simulate integrated base station signal source.
 The schematic for this subnetwork is shown below:

Advanced Design System 2011.01 - HSUPA Design Library

3. The physical channels integrated in this subnetwork model are listed in the following table:

Physical Channel
P_CPICH
S_CPICH
РССРСН
P_SCH
S_SCH
SCCPCH
PICH
DPCH
E-AGCH
E-HICH
E-RGCH
OCNS

- 4. The DPCH is generated by the fully-coded 3GPPFDD_DL_RefCh signal source.
- 5. DTCH, DCCH, and TPC patterns can be set through the DTCHDataPattern, DCCHDataPattern, and TPCDataPattern parameters; Five data patterns are supported: random, PN9, PN15, fixed repeated 8-bits, and user-defined file.
- 6. If the data pattern is 8-bits repeating, the bits to be repeated are set by the respective RepBitValue. For example if RepBitValue is set as 0x7a, bit sequence 0,1,1,1,1,0,1,0 will be output repeatedly.
- 7. If data is from a user-defined file, the file name is defined by the respective UserFileName. The user can edit the file with any text editor. The separator between bits can be a space, comma, or any other separator. If the bit sequence is shorter than the output length, data will be output repeatedly.
- 8. The DPCH data rate can be set through RefCh. DPCH channelization code is set through DPCH_SpreadCode.
- 9. CPICH includes primary and secondary CPICH. Primary CPICH channelization code is fixed at C256,0. CPICH_SpreadCode is set on secondary CPICH, with a spread factor of 256.
- 10. The PICH spread factor is 256. PICH channelization code is set through PICH_SpreadCode.
- 11. The PCCPCH channelization code is fixed at C256,1. The SCCPCH spread factor and spread channelization code are set through SCCPCH_SpreadFactor and

SCCPCH_SpreadCode.

- 12. The E-HICH can be set by EHICH_SgnlPttrn (Signal Pattern), EHICH_SqnIdx (Signature Sequence Index), and EHI_ERG_SpreadCode.
- 13. The E-RGCH can be set by ERGCH_SgnlPttrn (Signal Pattern), ERGCH_SqnIdx (Signature Sequence Index), and EHI_ERG_SpreadCode.
- 14. The E-AGCH can be set by EAGCH_SpreadCode and ERNTI.
- 15. Relative gain factor of each channel can be set through the respective GainFactor parameters. They are multiplied to the output of each channel model. A channel can be disabled by setting its gain factor to 0.
- 16. It is suggested that the square of all the GainFactors add up to 1 to make sure the RMS value of output downlink signal is 1. However, it isn't so important for the baseband signal. A normalized downlink source can be implemented by HSUPA_DL_SourceRF.
- 17. OCNS can be set through the OCNS_ChannelNum and six OCNS array parameters. The default OCNS channel is 16 and corresponding array parameters are 16 elements long. To change the OCNS channel number, the corresponding array parameters must be changed. For details regarding OCNS settings, see *HSUPA_OCNS* (hsupa).

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 6.7.0, Dec. 2005.
- 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 6.7.0, Dec. 2005.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 6.5.0, Mar. 2006.

HSUPA_DL_SourceRF

Description: HSUPA RF downlink signal source **Library:** HSUPA, Signal Sources

Parameters

Name	Description	Default	Symbol	Unit	Туре	Range
ROut	Source resistance	DefaultROut		Ohm	real	(0,∞)
RTemp	Temperature	DefaultRTemp		Celsius	real	[-273.15,∞)
TStep	Expression showing how TStep is related to the other source parameters	1/3.84 MHz/SamplesPerChip			string	
FCarrier	Carrier frequency	1950MHz		Hz	real	(0,∞)
Power	Power, valid only if PowerReference setting is Ior	dbmtow(43.0)		W	real	[0,∞)
PowerReference	Reference for all channels with relative power level: Ior, DPCHEc	Ior			enum	
DPCH_Ec	Ec of DPCH in dBm/3.84 MHz	-100		dB	real	(-∞,∞)
MirrorSpectrum	Mirror spectrum about carrier?: NO, YES	NO			enum	
GainImbalance	Gain imbalance, Q vs I	0.0		dB	real	(-∞,∞)
PhaseImbalance	Phase imbalance, Q vs I	0.0		deg	real	(-∞,∞)
I_OriginOffset	I origin offset (percent)	0.0			real	(-∞,∞)
Q_OriginOffset	Q origin offset (percent)	0.0			real	(-∞,∞)
IQ_Rotation	IQ rotation	0.0		deg	real	(-∞,∞)
SamplesPerChip	Samples per chip	8	S		int	[2,32]

RRC_FilterLength	RRC filter length (chips)	16		int	[2,128]
ExcessBW	Excess bandwidth of raised cosine filters	0.22		real	(0.0,1.0)
ScrambleCode	Index of scramble code	0		int	[0,512] for downlink; [0 16777215] for uplink
ScrambleOffset	Scramble code offset	0		int	[0,15]
ScrambleType	Scramble code type: normal, right, left	normal		enum	
TTI	Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms		enum	
EHICH_SgnlPttrn	E-HICH signal pattern	1.0		int array	[-1, +1]
ERGCH_SgnlPttrn	E-RGCH signal pattern	1.0		int array	[-1, +1]
EHICH_SqnIdx	Signature sequence index of EHICH	0		int	[0,39]
ERGCH_SqnIdx	Signature sequence index of ERGCH	1		int	[0,39]
EHI_ERG_SpreadCode	Spreading code for E-HICH and E- RGCH	19		int	[0,127]
EAGCH_SpreadCode	Spreading code for E-AGCH	100		int	[0,255]
ERNTI	E-DCH radio network temporary identifier	19		int	[0,65535]
EHICH_GainFactor	EHICH power gain in dB	-28.3	dB	real	(-∞,∞)
ERGCH_GainFactor	ERGCH power gain in dB	-24.4	dB	real	(-∞,∞)
EAGCH_GainFactor	EAGCH power gain in dB	-23.2	dB	real	(-∞,∞)
RefCh	Reference measurement channel: DL_REF_12_2, DL_REF_64, DL_REF_144, DL_REF_384	DL_REF_12_2		enum	
DPCH_SpreadCode	Spread code index of DPCH	127		int	[0,127] for 12.2kbps; [0,31] for 64kbps; [0,15] for 144kbps; [0,7] for 384kbps
CPICH_SpreadCode	Spread code index of CPICH	2		int	[0,255]
PICH_SpreadCode	Spread code index of PICH	16		int	[0,255]
SCCPCH_SlotFormat	SCCPCH slot format	0		int	[0,17]
SCCPCH_SpreadCode	Spread code index of SCCPCH	3		int	[0,SpreadFactor- 1]; SpreadFactor is set I

					SCCPCH_SlotFormat
DPCH_GainFactor	DPCH Ec over Ior in dB, valid only if PowerReference is Ior	-15	dB	real	(-∞,∞)
P_CPICH_GainFactor	Primary CPICH power gain in dB	-10.0	dB	real	(-∞,∞)
S_CPICH_GainFactor	Secondary CPICH power gain in dB	-300.0	dB	real	(-∞,∞)
PCCPCH_GainFactor	PCCPCH power gain in dB	-12	dB	real	(-∞,∞)
SCCPCH_GainFactor	SCCPCH power gain in dB	-300	dB	real	(-∞,∞)
P_SCH_GainFactor	Primary SCH power gain in dB	-15	dB	real	(-∞,∞)
S_SCH_GainFactor	Secondary SCH power gain in dB	-15	dB	real	(-∞,∞)
PICH_GainFactor	PICH power gain in dB	-15	dB	real	(-∞,∞)
OCNS_GainFactor	OCNS gain in dB, valid only if PowerReference is DPCH_Ec	-300	dB	real	(-∞,∞)
OCNS_ChannelNum	OCNS channel number	16		int	[1,512]
OCNS_PowerArray	OCNS channel power array in dB	-1 -3 -3 -5 -2 -4 -8 - 7 -4 -6 -5 -9 -10 -8 - 6 0		real array	(-∞,∞); the array size shall be equal to OCNS_ChannelNum
OCNS_SpreadFactorArray	OCNS spread factor array	128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128		int array	2 ⁿ , n=1,,9; array size shall be equal to OCNS_ChannelNum
OCNS_SpreadCodeArray	OCNS spread code array	2 11 17 23 31 38 47 55 62 69 78 85 94 125 113 119		int array	[0,OCNS_SpreadFactorArray- 1]; array size shall be equal to OCNS_ChannelNum; code conflict is checked
OCNS_DataPatternArray	OCNS data pattern array: 0-random, 1-PN9, 2-PN15, 3- Repeat Bits	000000000000000000000000000000000000000		int array	[0,1,2,3]; array size shall be equal to OCNS_ChannelNum
OCNS_RepBitValueArray	OCNS repeat bit value array	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		int array	[0,255]; array size shall be equal to OCNS_ChannelNum
OCNS_tOffsetArray	OCNS time offset in terms of 256 chips	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		int array	[0,149]; array size shall be equal to OCNS_ChannelNum
DTCHDataPattern	DTCH source data pattern: DTCH_random, DTCH_PN9, DTCH_PN15, DTCH_bits_repeat, DTCH_user_file	DTCH_random		enum	
DTCHRepBitValue	DTCH repeating data value	0xff		int	[0,255]
DTCHUserFileName	DTCH user-defined data file name	datafile.txt		filename	
DCCHDataPattern	DCCH source data pattern:	DCCH_random		enum	

Advanced Design	System 201	101 4910	Decign Library
Auvanceu Design	System 201	1.01 - 11501 /	Design Library

	Advanced D	esign System 2011.01 - H	SUPA Design Library	
	DCCH_random, DCCH_PN9, DCCH_PN15, DCCH_bits_repeat, DCCH_user_file			
DCCHRepBitValue	DCCH repeating data value	0×ff	int	[0,255]
DCCHUserFileName	DCCH user-defined data file name	datafile.txt	filenam	e
TPCDataPattern	Source data pattern: TPC_random, TPC_PN9, TPC_PN15, TPC_bits_repeat, TPC_user_file	TPC_random	enum	
TPCRepBitValue	TPC repeating data value	0xff	int	[0,255]
TPCUserFileName	TPC user-defined data file name	datafile.txt	filenam	le

Pin Outputs

Pin	Name	Description	Signal Type
1	RF	RF output	timed
2	EVM_Ref	reference signal for EVM	complex
3	DTCH	DTCH data	int
4	DCCH	DCCH data	int
5	EHICH	E-HICH data	real
6	ERGCH	E-RGCH data	real
7	EAGCH	E-AGCH	int

- This subnetwork model is used to simulate integrated base station RF signal source.
 The schematic for this subnetwork is shown below:

Advanced Design System 2011.01 - HSUPA Design Library

3. The physical channels integrated in this subnetwork model are listed below:

Physical Channel
P_CPICH
S_CPICH
РССРСН
P_SCH
S_SCH
SCCPCH
PICH
DPCH
E-AGCH
E-HICH
E-RGCH
OCNS
The DPCH is gen

- 4. The DPCH is generated by the fully-coded 3GPPFDD_DL_RefCh signal source.
- 5. DTCH, DCCH, and TPC patterns can be set through the DTCHDataPattern, DCCHDataPattern, and TPCDataPattern parameters; five data patterns are supported: random, PN9, PN15, fixed repeated 8-bits, and user-defined file.
- 6. If the data pattern is 8-bits repeating, the bits to be repeated are set by the respective RepBitValue. For example if RepBitValue is set as 0x7a, bit sequence 0,1,1,1,1,0,1,0 will be output repeatedly.
- 7. If data is from a user-defined file, the file name is defined by the respective UserFileName. The user can edit the file with any text editor. The separator between bits can be a space, comma, or any other separator. If the bit sequence is shorter than the output length, data will be output repeatedly.
- 8. The DPCH data rate can be set through RefCh. DPCH channelization code is set through DPCH_SpreadCode.
- 9. CPICH includes primary and secondary CPICH. Primary CPICH channelization code is fixed at C256,0. CPICH_SpreadCode is set on secondary CPICH, with a spread factor

of 256.

- 10. The PICH spread factor is 256. PICH channelization code is set through PICH_SpreadCode.
- 11. The PCCPCH channelization code is fixed at C256,1. The SCCPCH spread factor and spread channelization code are set through SCCPCH_SpreadFactor and SCCPCH_SpreadCode.
- 12. The E-HICH can be set by EHICH_SgnlPttrn (Signal Pattern), EHICH_SqnIdx (Signature Sequence Index), and EHI_ERG_SpreadCode.
- 13. The E-RGCH can be set by ERGCH_SgnlPttrn (Signal Pattern), ERGCH_SqnIdx (Signature Sequence Index), and EHI_ERG_SpreadCode.
- 14. The E-AGCH can be set by EAGCH_SpreadCode and ERNTI.
- 15. There are two ways to set the power ratio defined in Table C.2 and Table C.3 in [5]. Although each of these two ways can be converted to the other by calculation, the parameter PowerReference is provided for the user to set the power easily.
- 16. If PowerReference is Ior, the power of transmitter is set by parameter Power; if it is DPCH_Ec, the power of transmitter depends on the value of parameter DPCH_Ec and is calculated in the equations of the subnetwork.
- 17. Relative power levels of each channel can then be set through the respective GainFactor parameters, in dB units.
 - If PowerReference is Ior, OCNS_GainFactor is calculated from other GainFactors. (Refer to Table C.6 in [5]);
 - If PowerReference is DPCH_Ec, the relative Ior is calculated. DPCH_GainFactor is equal to the inverse of Ior.
 - All "GainFactors" are changed to power ratio over Ior by multiplying DPCH_GainFactor.
 - The GainFactors are converted into voltage values and multiplied to the output of each channel model. A channel can be disabled by setting its gain factor to a large minus value such as -300 dB.
- 18. OCNS can be set through the OCNS_ChannelNum and six OCNS array parameters. The default OCNS channel is 16 and corresponding array parameters are 16 elements long. To change the OCNS channel number, the corresponding array parameters must be changed. The output of OCNS must be normalized. For details regarding OCNS settings, see *HSUPA_OCNS* (hsupa).

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 6.7.0, Dec. 2005.
- 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 6.7.0, Dec. 2005.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 6.5.0, Mar. 2006.
- 4. 3GPP Technical Specification TS 25.214, "Physical layer procedures (FDD)," Version 6.8.0, Mar. 2006.
- 5. 3GPP Technical Specification TS 25.101, "UE Radio transmission and Reception (FDD)," Version 6.11.0, Mar. 2006.

Description: E-DCH absolute grant channel **Library:** HSUPA, Signal Sources

Parameters

Name	Description	Default	Туре	Range
TTI	Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms	enum	
EAGCH_SpreadCode	Spreading code for E-AGCH	100	int	[0,255]
ERNTI	E-DCH radio network temporary identifier	19	int	[0,65535]
ScrambleOffset	Scramble code offset	0	int	[0,15]
ScrambleType	Scramble code type: normal, right, left	normal	enum	
ScrambleCode	Index of scramble code	0	int	[0,512] for downlink; [0, 16777215] for uplink

Pin Inputs

Pin	Name	Description	Signal Type
1	ValueIdx	absolute grant value index	int
2	Scope	absolute grant scope	int

Pin Outputs

Pin	Name	Description	Signal Type
3	Output	output	complex
4	STTD	space time transmit diversity output	complex
5	EAGCH	E-AGCH	int

- 1. This subnetwork model is used to generate the 3GPP/HSUPA absolute grant channel (E-AGCH) as defined in [2], Figure 24: "Coding for E-AGCH".
- 2. The schematic for this subnetwork is shown below:

- 3. This subnetwork model completes the following operations:
 - Multiplexing of E-AGCH information: Absolute Grant Value and Absolute Grant Scope
 - CRC attachment for E-AGCH (including E-RNTI mask)
 - Channel coding for E-AGCH
 - Rate matching for E-AGCH
 - Physical channel mapping for E-AGCH.

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 6.7.0, Dec. 2005.
- 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 6.7.0, Dec. 2005.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 6.5.0, Mar. 2006.

HSUPA_EAGCH_Decode

Description: Channel decoder of E-DCH absolute grant channel **Library:** HSUPA, Demultiplexers & Decoders

Parameters

Name Description	Default	Туре	Range
TTI Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms	enum	
ERNTI E-DCH radio network temporary identifier	19	int	[0,65535]

Pin Inputs

Pin	Name	Description	Signal Type
1	AG_Sym	input symbols	real

Pin Outputs

Pin	Name Description		Signal Type
2	EAGCH	Information bits for H- AGCH	int
3	Parity	The result of CRC	int
4	ValueIdx	absolute grant value index	int
5	Scope	absolute grant scope	int

- 1. This subnetwork model completes the inverse process of "Coding for E-AGCH", which is defined in [2], Figure 24.
- 2. The schematic for this subnetwork is shown below:

- 3. This subnetwork model completes the following operations:
 - Rate de-matching for E-AGCH
 - Viterbi decoding for E-AGCH
 - CRC checking for E-AGCH
 - De-multiplexing of E-AGCH information: Absolute Grant Value and Absolute Grant Scope

- 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.10.0, Dec. 2008.
 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD),"
- Version 7.9.0, Sept. 2005.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sept. 2006.

HSUPA_EAGCH_DeRM

Description: HSUPA E-AGCH rate dematcher **Library:** HSUPA, Demultiplexers & Decoders

Pin Inputs

Pin	Name	Description	Signal Type
1	Input	input	real
Pin	Output	s	

Pin	Name	Description	Signal Type
2	Output	output	real

Notes/Equations

- 1. This model completes the inverse process of "Rate matching for E-AGCH", which is defined in [2].
- 2. Each firing, 60 tokens are consumed; 90 tokens are output. The output tokens are obtained by inserting 30 zeros "z ₁, z ₂, z ₅, z ₆, z ₇, z ₁₁, z ₁₂, z ₁₄, z ₁₅, z ₁₇, z ₂₃, z

 $_{24}$, z $_{31}$, z $_{37}$, z $_{44}$, z $_{47}$, z $_{61}$, z $_{63}$, z $_{64}$, z $_{71}$, z $_{72}$, z $_{75}$, z $_{77}$, z $_{80}$, z $_{83}$, z $_{84}$, z $_{85}$, z $_{87}$, z $_{88}$, z $_{90}$ " to the input tokens.

Note The position numbers (1, 2, 5, ..., 87, 88, 90) above are positions relative to the output tokens.

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 6.7.0, Dec. 2005.
- 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 6.7.0, Dec. 2005.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 6.5.0, Mar. 2006.

HSUPA_EAGCH_RM

Description: HSUPA E-AGCH rate matcher **Library:** HSUPA, Multiplexers & Coders

Pin Inputs

Pin	Name	Description	Signal Type
1	Input	input	int
Pin	Output	S	

Pin	Name	Description	Signal Type
2	Output	output	int

Notes/Equations

- 1. This model completes the "Rate matching for E-AGCH" process as defined in [2].
- 2. Each firing, 90 tokens are consumed; 60 tokens are output. The output tokens are obtained by puncturing "z 1, z 2, z 5, z 6, z 7, z 11, z 12, z 14, z 15, z 17, z 23, z 24, z 31
 - , z $_{37}$, z $_{44}$, z $_{47}$, z $_{61}$, z $_{63}$, z $_{64}$, z $_{71}$, z $_{72}$, z $_{75}$, z $_{77}$, z $_{80}$, z $_{83}$, z $_{84}$, z $_{85}$, z $_{87}$, z $_{88}$, z $_{90}$ " from input tokens "z $_{1}$, z $_{2}$, ..., z $_{90}$ ".

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 6.7.0, Dec. 2005.
- 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 6.7.0, Dec. 2005.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 6.5.0, Mar. 2006.

HSUPA_EDPCCH_ChDecode

Description: HSUPA E-DPCCH channel decoder **Library:** HSUPA, Demultiplexers & Decoders

Parameters

Name	Description	Default	Туре	Range
TTI	Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms	enum	
Threshold	Threshold	-23.6	real	(-∞,∞)
Pin Input	S			

Pin	Name	Description	Signal Type
1	Input	input	real
2	PwrN	power of noise estimated from DPCCH	real

Pin Outputs

Pin	Name	Description	Signal Type
3	Output	output	int
4	ActiveE	E-DPCCH flag, 1 for good frames, 0 for bad frames	int

Notes/Equations

- 1. This model is used to implement channel decoding for HSUPA uplink E-DPCCH.
- 2. Each firing, 10 Output token and one ActiveE token are produced when 30 Input and DPCCH tokens consumed
- 3. Power of input E-DPCCH signal is estimated. SNR over noise power estimated from DPCCH is calculated and compared with a threshold. If SNR is less than the threshold, no enhanced uplink channel is detected and the output of ActiveE is 0, otherwise it is detected and the output of ActiveE is 1.
- 4. In any case, the input signal will be decoded and output in the pin Output as if enhanced uplink channel did send in the transmit end.
- 5. The performance of E-DPCCH false alarm test and missed detection test is strongly correlated to each other, and is determined by the threshold of power detection. This threshold is very sensitive to the change of power of configuration of uplink channels. The E-DPCCH performance test follows this order:
 - Sweeping Threshold to get target "false alarm"(1% in [4]).
 - Set the Threshold and run simulation of missed detection.
 - Compare the result of simulation with target "missed detction" (0.2% in [4]).

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.10.0, Dec. 2008.
- 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 7.9.0, Sept. 2008.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sept. 2008.
- 4. 3GPP Technical Specification TS 25.104, "UTRA (BS) FDD: Radio transmission and Reception," Version 7.10.0, Mar. 2008.

Advanced Design System 2011.01 - HSUPA Design Library

5. 3GPP Technical Specification TS 25.141, "Base station conformance test," Version 6.11.0, Mar. 2008.

HSUPA EDPCCH ChEncode

Description: HSUPA E-DPCCH channel encoder Library: HSUPA, Multiplexers & Coders

Pin Inputs

Pin	Name	Description	Signal Type				
1	Input	input	int				
Pin Outputs							

Pin	Name	Description	Signal Type
2	Output	output	int

Notes/Equations

- 1. This model is used to implement channel coding for HSUPA uplink E-DPCCH according to 4.9.4 in [2].
- 2. For each firing, 30 Output tokens are produced when 10 Input tokens are consumed.

- 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.6.0, May 2008.
 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD),"
- Version 7.9.0, Sep. 2008.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sep. 2008.

HSUPA_EHICH_ERGCH

Description: E-DCH HARQ ACK indicator channel or E-DCH relative grant channel **Library:** HSUPA, Signal Sources

Parameters

Name	Description	Default	Symbol	Туре	Range
SequenceIndex	Signature sequence index	0	I	int	[0,39]
EHI_ERG_SpreadCode	Spreading code for E- HICH and E-RGCH	19		int	[0,127]
ScrambleOffset	Scramble code offset	0		int	[0,15]
ScrambleType	Scramble code type: normal, right, left	normal		enum	
ScrambleCode	Index of scramble code	0		int	[0,512] for downlink; [0, 16777215] for uplink

Pin Inputs

Pin	Name	Description	Signal	Туре
	a			

1	Signal	signal	real	

Pin Outputs

Pin	Name	Description	Signal Type
2	Output	output	complex
3	STTD	space time transmit diversity output	complex

- 1. This subnetwork model is used to generate E-DCH Relative Grant Channel (E-RGCH) or E-DCH Hybrid ARQ Indicator Channel (E-HICH) as defined in [1].
- 2. The schematic for this subnetwork is shown below:

- 3. E-RGCH and E-HICH are fixed rate (SF=128) dedicated downlink physical channels. The spreading code index is specified by EHI_ERG_SpreadCode.
- 4. SequenceIndex specifies the sequence index defined in [1], Table 16B: "E-HICH and E-RGCH signature hopping pattern".
- 5. The STTD-based open loop transmit diversity is implemented.
- 6. There are no implementation differences between E-RGCH and E-HICH within the scope of this subnetwork model.

- 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 6.7.0, Dec. 2005.
 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD),"
- Version 6.7.0, Dec. 2005.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 6.5.0, Mar. 2006.

HSUPA_EHICH_ERGCH_Decode

Description: Decoder of HSUPA EHICH or ERGCH **Library:** HSUPA, Demultiplexers & Decoders

Parameters

Name	Description	Default	Symbol	Туре	Range
SequenceIndex	Signature sequence index	0	I	int	[0,39]
TTI	Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms		enum	
TransBlockIgnored	Transport block Ignored due to system delay	1		int	[0,5]
Threshold	Threshold	-32		real	

Pin Inputs

Pin	Name	Description	Signal Type
1	Input	input	real
2	CPICH	symbols of CPICH	real

Pin Outputs

Pin Name Description Signal Type

3 Output output real

- 1. This model decodes the E-DCH Relative Grant Channel (E-RGCH) or E-DCH Hybrid ARQ Indicator Channel (E-HICH) according to the value for SequenceIndex.
- 2. The Input of this model is de-spread 60ksps E-RGCH or E-HICH symbols, which may carry signatured E-DCH Relative Grant or Hybrid ARQ Indicator. The CPICH is de-spread 30ksps CPICH symbols, which is used to estimate CPICH signal power as a reference for EDCH channel detection.
- 3. Each firing, 1 token is produced while 120 Input tokens and 60 CPICH tokens (TTI 2ms) or 480 Input tokens and 240 CPICH tokens (TTI 10ms) are consumed.
- 4. When TTI is set to 2ms, this model will detect the signal using 3 consecutive slots; when TTI is set to 10ms, 12 consecutive slots will be used to detect the signal.
- 5. The first "TransBlockIgnored" fires will be ignored (do nothing and output all zeros) to save the simulation time.
- 6. Threshold sets the threshold for ternary detection. The algorithm for ternary detection is as follows:
 - The Input EDCH signal is decoded as if the signal "+1/-1" was transmitted in the transmit end.
 - Power of E-DCH channel and power of CPICH are estimated. The ratio of these two values will be compared to Threshold.
 - If the ratio (dB) is higher than Threshold, the decoded symbol of step 1 is used as the Output; otherwise the Output is set to "0".
- 7. The performance of the E-HICH or E-RGCH test is strongly correlated to the threshold described in item 6. Furthermore, this threshold is very sensitive to the change of power of configuration of downlink channels.
- 8. The performance test follows this order:
 - Sweeping Threshold to get target "false detection" (50% in [4]).
 - Set the Threshold and run simulation of missed detection.
- Compare the result of simulation with target "missed detection" (1% in [4]). 9. There are no implementation differences between E-RGCH and E-HICH within the
- scope of this model.

- 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 6.7.0, Dec. 2005.
 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD),"
- Version 6.7.0, Dec. 2005.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 6.5.0, Mar. 2006.
- 4. 3GPP Technical Specification TS 25.101, "UE Radio transmission and Reception (FDD)," Version 6.11.0, Mar. 2006.

HSUPA_EVM

Description: HSUPA EVM measurement **Library:** HSUPA, Measurement

Parameters

Name	Description	Default	Unit	Туре	Range
RLoad	load resistance. DefaultRLoad will inherit from the DF controller.	DefaultRLoad	Ohm	real	(0,∞)
RTemp	physical temperature, in degrees C, of load resistance. DefaultRTemp will inherit from the DF controller.	DefaultRTemp	Celsius	real	[-273.15,∞)
FCarrier	carrier frequency	1.9 GHz	Hz	real	(0,∞)
ChipRate	symbol rate	3840000	Hz	real	
alpha	specify the alpha for 3GPP root raised cosine filtering.	0.22		real	[0,1]
LongScrambleCodeNum	index of Long Scramble Code	0		int	[0,16777215]
syncModeSelection	Sync mode selection: DPCCH, PRACH_MESSAGE	DPCCH		enum	
DPCCHSlotFormat	the slot format for DPCCH, used for synchronization	0		int	[0,5]
AnalysisCodeLevel	specifies the channel level that Channel EVM with be calculated for	1		int	[1,8]
AnalysisCodeIndex	specifies the channel index that Channel EVM with be calculated for	0		int	[0,2^AnalysisCodeLevel- 1]
AnalysisIQPart	For symbol EVM, choose IQ part for which you would like calculate EVM for: I, Q, IQ	I		enum	
ModScheme	modulation scheme for selected AnalysisCodeLevel and AnalysisCodeIndex: AutoDetect, BPSK, PAM4	AutoDetect		enum	
EVMLengthInSlot	This variable sets chip interval of the EVM window in a slot, this feature was added to implement half slot EVM: FullSlot, FirstHalfSlot, SecondHalfSlot	FullSlot		enum	
ExcludeTransient	EVM metrics will exclude first/last 96 chips from the calculation length (normally 1 slot): NO, YES	NO		enum	

	Advanced Design S	ystem 2011.01 - HS	SUPA Design	Library
MirrorSpectrum	Mirror spectrum about carrier?: NO, YES	NO	enu	n
EVMIncludeIQOffset	selection of calculating EVM pre-compensating for IQ origin offset: NO, YES	NO	enu	n
DTXDetection	Discontinuous Transmission channels detection: NO, YES	NO	enu	n
MultiChannelEstimator	When set to TRUE, channel-by-channel timing estimation and compensation: NO, YES	NO	enu	n
Start	start time for data recording. DefaultTimeStart will inherit from the DF Controller.	DefaultTimeStart	sec real	[0,∞)
AverageType	average type: OFF, RMS (Video)	OFF	enu	n
SlotsToAverage	number of slots that will be averaged if AverageType is RMS (Video)	15	int	[1,∞)

Pin Inputs

Pin Name Description Signal Type

1 input input signal timed

- 1. This subnetwork model is used to measure EVM for 3GPP HSDPA transmitter as defined in Reference [5]. Additionally, it can be used to measure EVM of a specific channel. The input signal must be a timed RF (complex envelope) signal.
- 2. The schematic for this subnetwork is shown below:

- 3. The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Both waveforms pass through a matched Root Raised Cosine filter with bandwidth 3.84 MHz and roll-off = 0.22. Both waveforms are then further modified by selecting the frequency, absolute phase, absolute amplitude and chip clock timing so as to minimize the error vector.
- 4. The EVM result is defined as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %. For Release 99 and Release 4, the EVM measurement interval is one timeslot. For Release 5 and later releases where tests may include power changes, the measurement interval is further clarified

as being one timeslot except when the mean power between slots is expected to change whereupon the measurement interval is reduced by 25 μ s(96 chips) at each end of the slot.

- 5. The available results from this measurement are:
 - Avg_Channel_EVM: average channel EVM rms in %
 - Avg_Channel_MagErr_rms_percent: average channel magnitude error rms in %
 - Avg_Channel_PhaseErr_deg: average channel phase error in degrees
 - Avg_EVM_dB: average composite EVM rms in dB
 - Avg_EVM_rms_percent: average composite EVM rms in %
 - Avg_FreqErr_Hz: average frequency error in Hz
 - Avg_IQOffset_dB: average IQ offset in dB
 - Avg_MagErr_rms_percent: average composite magnitude error rms in %
 - Avg_PhaseErr_deg: average composite phase error in degree
 - Avg_Rho: average Rho
 - Channel_EVM: channel EVM rms in % versus slot
 - Channel_MagErr_rms_percent: channel magnitude error rms in % versus slot
 - Channel_PhaseErr_deg: channel phase error in degree versus slot
 - EVM_dB: composite EVM in dB versus slot
 - EVM_rms_percent: composite EVM rms in % versus slot
 - FreqErr_Hz: frequency error in Hz versus slot
 - IQOffset_dB: IQ offset in dB versus slot
 - MagErr_rms_percent: magnitude error rms in % versus slot
 - PhaseErr_deg: phase error in degree versus slot
 - Rho: rho versus slot
- 6. When 16QAM is not used on any of the uplink code channels, the EVM shall not exceed 17.5% for the parameters specified in Table 6.15 in Reference [5]. When 16QAM used on any of the uplink code channels, the EVM shall not exceed 14% for the parameters specified in Table 6.15 in Reference [5].
- 7. The alpha parameter specifies the alpha for 3GPP root raised cosine filtering and should be 0.22 in this testing.
- 8. The LongScrambleCodeNum parameter specifies the long scramble code index used. The short scramble code is not supported yet.
- 9. The syncModeSelection parameter specifies synchronization mode: DPCCH or PRACH_MESSAGE.
- 10. The DPCCHSlotFormat specifies the slot format for DPCCH, used for synchronization.
- 11. The AnalysisCodeLevel parameter specifies the channel level that Channel EVM with be calculated for. The AnalysisCodeIndex parameter specifies the channel index that Channel EVM with be calculated for.
- 12. The AnalysisIQPart specifies which part you like to calculate the EVM for, because the modulation is separated between I and Q ports.
- 13. The ModScheme parameter specifies the modulation type for the selected code channel and IQ part: "BPSK", "4PAM" or you can choose "AutoDetect" to let the EVM model to detect the modulation type itself. However, if there exists strong interference, the auto detect result may be wrong.
- 14. The EVMLengthInSlot specifies the length of window in a slot for EVM calculation. It could be selected to calcualte EVM within "FullSlot", "FirstHalfSlot" or "SecondHalfSlot".
- 15. The ExcludeTransient specifies whether or not to exclude the 25 μ s(96 chips) at each end of the slot when calculating the EVM.
- 16. The MirrorSpectrum parameter can be used to mirror the spectrum (invert the Q envelope) at the output of the modulator. Depending on the configuration of the mixers in the upconverter, which typically follows a modulator, the signal at the upconverter's input may need to be mirrored. If such a configuration is used, then this parameter should be set to YES.
- 17. The EVMIncludeIQOffset parameter specifies whether to pre-compensate for IQ origin offset or not when calculating EVM.

- 18. The DTXDetection parameter specifies whether to detect and perform correct measurement analysis on DTX "Discontinuous Transmission" channels. DTX measurement analysis mode does not affect the EVM result unless the measurement data includes a partially transmitted frame in a channel. It is recommended that you select YES to measure DTX signals and select NO to measure non-DTX signals.
- 19. The MultiChannelEstimator parameter specifies the operation mode of the parameter estimator used to perform best fitting for EVM. If the MultiChannelEstimator is set to YES, channel by channel timing estimation and compensation will be performed.
- 20. The Start parameter specifies the start time for data recording.
- 21. If AverageType is set to OFF, only one slot (the first slot in the first frame) is detected, demodulated, and analyzed. If AverageType is set to RMS (Video), SlotsToAverage slots are processed.
- 22. The SlotsToAverage parameter specifies the number of slots that will be averaged if AverageType is RMS Video.
- 23. If, for any reason, a slot is mis-detected, the results from its analysis are discarded. The EVM results obtained from all the successfully slots, demodulated, and analyzed slots are averaged to give the final averaged results. The EVM results from each successfully analyzed slots are also recorded (in the variables without the Avg_ prefix in their name).
- 24. This signal segment is searched in order for a complete frame including 15 slots to be detected. If there is an unknown idle part at the begin of the burst, then a TimedSink component can be used to plot the signal in the data display. By observing the magnitude of the signal's envelope versus time one can determine the duration of the burst and the idle interval. Making the Start parameter equals to the idle interval will facilitate the testing.
- 25. If the acquired signal segment does not contain 15 slots, the algorithm may fail to detect any frame and the analysis that follows will most likely produce incorrect results. Therefore, ResultLength must be longer than 15.

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.6.0, May 2008.
- 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 7.9.0, Sep. 2008.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sep. 2008.
- 4. 3GPP Technical Specification TS 25.214, "Physical layer procedures (FDD)," Version 7.9.0, May 2008.
- 5. 3GPP Technical Specification TS 25.101, "UE Radio transmission and Reception (FDD)," Version 7.13.0, Sep. 2008.
- 6. 3GPP Technical Specification TS 25.104, "Base Station (BS) radio transmission and reception (FDD)," Version 7.10.0, Mar. 2008.
- 7. 3GPP Technical Specification TS 25.141, "Base station (BS) conformance testing (FDD)," V7.11.0, Mar. 2008.
- 8. 3GPP Technical Specification TS 34.121, "Radio transmission and reception (FDD)," Version 7.5.0, Jun. 2007.

HSUPA_EVM_Old

Description: EVM and Phase Discontinuity Measurements **Library:** HSUPA, Measurement

Parameters

Name	Description	Default	Unit	Туре	Range
LinkDir	link direction: Downlink, Uplink	Uplink		enum	
SlotFormat	slot format	0		int	†
ScrambleCode	index of scramble code	0		int	[0,512] for downlink; [0, 16777215] for uplink
ULScrambleType	uplink scramble code type: LONG, SHORT	LONG		enum	
ScrambleOffset	scramble code offset	0		int	[0,15]
DLScrambleType	downlink scramble code type: normal, right, left	normal		enum	
SpreadCode	index of spread code	0		int	[0,SF-1]; SF can be set by SlotFormat or equal to SpreadFactor; SF is 256 if for CPICH, PICH or uplink DPCCH
SampleRate	sample rate	8		int	[1,256]
StartSlot	number of slot to be ignored	0		int	[0,∞)
SlotNum	slot number	1		int	[1,15]
Correlator	correlator method: Coherent, NonCoherent	Coherent		enum	
SCH	switch for SCH: OFF, ON	ON		enum	
СРІСН	switch for CPICH: OFF, ON	OFF		enum	
EVMValue	EVM value expression options: EVM_Ratio, EVM_Percent	EVM_Percent		enum	
Correct_IQ_Offset	switch for IQ offset correction: NO, YES	YES		enum	
DUT_DelayBound	DUT delay bound	0.00001 sec	sec	real	[0,(400.0/3840000)]
ExcludeTransition	select YES for predictable power changes: NO, YES	YES		enum	

Pin Inputs

Pin	Name	Description	Signal Type
1	test	tested signals	complex
2	ref	reference signals	complex

Notes/Equations

- This component is obsolete for new design. Please use the improved HSUPA_EVM (hsupa) for new design work.
- 1. This subnetwork model measures EVM and Phase Discontinuity that are used to evaluate modulation accuracy.
- 2. The schematic for this subnetwork is shown below:

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.6.0, May 2008.
- 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 7.9.0, Sep. 2008.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sep. 2008.
- 4. 3GPP Technical Specification TS 25.214, "Physical layer procedures (FDD)," Version 7.9.0, May 2008.
- 5. 3GPP Technical Specification TS 25.101, "UE Radio transmission and Reception (FDD)," Version 7.13.0, Sep. 2008.
- 6. 3GPP Technical Specification TS 25.104, "Base Station (BS) radio transmission and reception (FDD)," Version 7.10.0, Mar. 2008.
- 7. 3GPP Technical Specification TS 25.141, "Base station (BS) conformance testing (FDD)," V7.11.0, Mar. 2008.
- 8. 3GPP Technical Specification TS 34.121, "Radio transmission and reception (FDD)," Version 7.5.0, Jun. 2007.

Description: HSUPA fixed reference channel **Library:** HSUPA, Signal Sources

Parameters

Name	Description	Default	Туре	Range
FRC	Fixed reference channel: FRC1, FRC2, FRC3, FRC4, FRC5, FRC6, FRC7, FRC8	FRC1	enum	
TestCase	Test case: E-DPDCH testing, E-DPCCH missed detection testing, E-DPCCH false alarm testing	E-DPDCH testing	enum	
DataPattern	Source data pattern: Random, PN9, PN15, Repeat Bits	Random	enum	
RepeatBitValue	Repeating data value	0x0001	int	[0, 65535]
RepeatBitPeriod	Repeating data period	2	int	[1, 16]
Scramble	scramble code type: LONG, SHORT	LONG	enum	
EDPCCH_Boosting	Setting to YES if E-DPCCH_Boosting is configured, otherwise NO: NO, YES	NO	enum	
ScrambleCode	Index of scramble code	0	int	[0,512] for downlink; [0, 16777215] for uplink

Pin Inputs

Pin	Name	Description	Signal Type
1	ARQ	automatic repeat request	int

Pin Outputs

Pin	Name	Description	Signal Type
2	Output	output	complex
3	RSN	retransmission sequence number	int
4	BitED	bits of E-DPDCH	int
5	BitEC	bits of E-DPCCH	int

- 1. This subnetwork is used to implement fixed reference channels for HSUPA uplink.
- 2. The schematic of HSUPA_FRC is shown below:

- Fixed reference channels are defined in Annex A.9 A.16[5]. TTI and TransBlockSize vs. FRC are implemented using equations in the schematic. GainEC and GainED vs. TestCase are also implemented using equations in the schematic.
- 4. DPDCH and HS-DPCCH is switched off.
- 5. MaxRSN is set to 3.
- 6. RV_Mode is set to "Calculated using RSN".
- 7. HARQ_PrcssMode is set to "Depending on TTI", that is NumHARQ is 8 for TTI=2 μ s and is 4 for TTI=10 μ s.
- 8. For more information on HARQ functions, please see *HSUPA_Bits* (hsupa) and *HSUPA_RateMatch* (hsupa).
- 9. For more information, please refer to documentation for the models used in this subnetwork.

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.6.0, May 2008.
- 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 7.9.0, Sep. 2008.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sep. 2008.
- 4. 3GPP Technical Specification TS 25.104, "Base Station (BS) radio transmission and reception (FDD)," Version 7.10.0, Mar. 2008.
- 5. 3GPP Technical Specification TS 25.141, "Base station (BS) conformance testing (FDD)," V7.11.0, Mar. 2008.

HSUPA_FRC_Receiver

Description: HSUPA receiver for fixed reference channel **Library:** HSUPA, Receivers

Parameters

Name	Description	Default	Symbol	Туре	Range
FRC	Fixed reference channel: FRC1, FRC2, FRC3, FRC4, FRC5, FRC6, FRC7, FRC8	FRC1		enum	
DPDCH_Configured	Setting to YES if DPDCH is configured, otherwise NO: NO, YES	NO		enum	
HSDPCCH_Configured	Setting to YES if HS-DPCCH is configured, otherwise NO: NO, YES	NO		enum	
Scramble	scramble code type: LONG, SHORT	LONG		enum	
ScrambleCode	Index of scramble code	0		int	[0,512] for downlink; [0, 16777215] for uplink
SamplesPerChip	Samples per chip	8	S	int	[2,32]
MaxDelaySample	Maximum delay boundary, in terms of samples	0		int	[0,2559] for RAKE receiver; [0,102400] in other models
ChannelType	Select the channel type to be processed: CH_GAUSSIAN, CH_FADING	CH_GAUSSIAN		enum	
ChannelInfo	Fading channel information source: Known, Estimated	Known		enum	
ChannelInfoOffset	Offset between spread code and channel information in terms of sample	0		int	[0,MaxDelaySample]
EstSlotsNum	Number of slots for channel estimation	1		int	[1,3]
UseMovingEstWindow	If use moving window in channel estimation: NO, YES	NO		enum	
PathSearch	Path search frequency:	Once		enum	

	EverySlot, Once			
SearchMethod	Path search method: Coherent, NonCoherent, Combined	Coherent	enum	
SearchSlotsNum	Number of slots for path search	1	int	[1,12]
PathNum	Number of Rake fingers	1	int	[1,6]
UsePastSearch	If use past samples for path search: NO, YES	NO	enum	
PathDelaySample	Delay for each finger, in terms of samples	0	int array	[0,MaxDelaySample]; array size shall be equal to PathNum
TC_Iteration	Turbo code decoder iteration number	4	int	[1,10]
TC_Alfa	Alfa of lowpass filter	0.4	real	[0,1.0)
Threshold_EDPCCH	Threshold for decoding E-DPCCH	-23.6	real	(-∞,∞)

Pin Inputs

Pin	Name	Description	Signal Type
1	Input	input	complex
2	RSN	retransmission sequence number	int
3	CH_M	channel information	multiple complex

Pin Outputs

Pin	Name	Description	Signal Type
4	EDCH	received bits of E-DCH	int
5	GoodED	CRC parity bit of EDCH packet	int
6	EDPCCH	received bits of E-DPCCH	int
7	ActiveE	E-DPCCH flag, 1 for good frame, 0 for bad	int

- 1. This subnetwork is used to implement baseband receiver for FRCs in HSUPA uplink.
- 2. The schematic of this subnetwork is shown below:

- 3. MaxRSN is set to 3.
- 4. RV_Mode is set to "Calculated using RSN".
- 5. HARQ_PrcssMode is set to "Depending on TTI", that is NumHARQ is 8 for TTI=2 ms and is 4 for TTI=10 ms.
- 6. For more information, see *HSUPA_FRC* (hsupa), *HSUPA_UL_Rake* (hsupa), *HSUPA_RateDematch* (hsupa), and *HSUPA_EDPCCH_ChDecode* (hsupa).

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.10.0, Dec. 2008.
- 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 7.9.0, Sept. 2008.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sept. 2008.
- 4. 3GPP Technical Specification TS 25.104, "UTRA (BS) FDD: Radio transmission and Reception," Version 7.10.0, Mar. 2008.
- 5. 3GPP Technical Specification TS 25.141, "Base station conformance test," Version 7.11.0, Mar. 2008.

HSUPA_FRC_ReceiverRF

Description: HSUPA receiver for fixed reference channel **Library:** HSUPA, Receivers

Parameters

nput resistance Carrier requency Reference phase n degrees	DefaultRLoad 1950MHz		Ohm Hz	real real	(0,∞) (0,∞)
Carrier requency Reference phase n degrees	1950MHz		Hz	real	(0 m)
Reference phase n degrees	0.0				
	0.0		deg	real	(-∞,∞)
Samples per hip	8	S		int	[2,32]
RC filter length chips)	16			int	[2,128]
ndex of cramble code	0			int	[0,512] for downlink; [0, 16777215] for uplink
cramble code ype: LONG, SHORT	LONG			enum	
ixed reference hannel: FRC1, RC2, FRC3, RC4, FRC5, RC6, FRC7, RC8	FRC1			enum	
Setting to YES if OPDCH is configured, otherwise NO: NO, YES	NO			enum	
Setting to YES if IS-DPCCH is configured, otherwise NO: NO, YES	NO			enum	
faximum delay boundary, in erms of samples	0			int	[0,2559] for RAKE receiver; [0,102400] in other models
Gelect the channel type to be processed: CH_GAUSSIAN, CH_FADING	CH_GAUSSIAN			enum	
ading channel	Known			enum	
	C6, FRC7, C8 tting to YES if DCH is nfigured, nerwise NO:), YES tting to YES if -DPCCH is nfigured, nerwise NO:), YES iximum delay undary, in rms of mples lect the annel type to processed: I_GAUSSIAN, I_FADING ding channel	C6, FRC7, C8 tting to YES if NO DCH is nfigured, nerwise NO:), YES tting to YES if NO >, YES NO tting to YES if NO i-DPCCH is NO nerwise NO: NO y YES NO iximum delay 0 undary, in ms of mples CH_GAUSSIAN Icct the CH_GAUSSIAN I_GAUSSIAN, Known	C6, FRC7, C8C8tting to YES if DCH is nfigured, nerwise NO: b, YESNO0, YESNOtting to YES if i-DPCCH is nfigured, nerwise NO: b, YESNOiximum delay undary, in rms of mples0lect the annel type to processed: I_GAUSSIAN, I_FADINGCH_GAUSSIAN known	C6, FRC7, C8C8tting to YES if DCH is nfigured, nerwise NO: b, YESNOiting to YES if i-DPCCH is nfigured, nerwise NO: b, YESNOiximum delay undary, in rms of mples0iximum delay undary, in rms of mples0Ict the annel type to processed: I_GAUSSIAN, I_FADINGCH_GAUSSIAN I Incomention	C6, FRC7, C8C8Image: C6, FRC7, C8C8Image: C6, FRC7, C8tting to YES if DPCCH is nfigured, DPCCH is nfigured, nerwise NO: D, YESNOImage: C6, FRC7, C8Image: C6, FRC7, FRC7, C8Image: C6, FRC7, FRC7, C8Image: C6, FRC7, FRC7, C8Image: C6, FRC7, F

11	Advar	nced Design Syst	tem 2011.01 - HSUPA	Design Library
ChannelInfoOffset	Offset between spread code and channel information in terms of sample	0	int	[0,MaxDelaySample]
EstSlotsNum	Number of slots for channel estimation	1	int	[1,3]
UseMovingEstWindow	If use moving window in channel estimation: NO, YES	NO	enum	
PathSearch	Path search frequency: EverySlot, Once	Once	enum	
SearchMethod	Path search method: Coherent, NonCoherent, Combined	Coherent	enum	
SearchSlotsNum	Number of slots for path search	1	int	[1,12]
PathNum	Number of Rake fingers	1	int	[1,6]
UsePastSearch	If use past samples for path search: NO, YES	NO	enum	
PathDelaySample	Delay for each finger, in terms of samples	0	int array	[0,MaxDelaySample]; array size shall be equal to PathNum
TC_Iteration	Turbo code decoder iteration number	4	int	[1,10]
TC_Alfa	Alfa of lowpass filter	0.4	real	[0,1.0)

Pin Inputs

Threshold_EDPCCH

Pin	Name	Description	Signal Type
1	RF_In	input	timed
2	RSN	retransmission sequence number	int
3	CH_M	channel information	multiple complex

Threshold for

decoding E-DPCCH -23.6

Pin Outputs

Pin	Name	Description	Signal Type
4	EDCH	received bits of E-DCH	int
5	GoodED	CRC parity bit of EDCH packet	int
6	EDPCCH	received bits of E-DPCCH	int
7	ActiveE	E-DPCCH flag, 1 for good frame, 0 for bad	int

Notes/Equations

1. This subnetwork is used to implement a fixed reference channel receiver in RF for

real

(-∞,∞)

HSUPA uplink.

3. For more information, see HSUPA_FRC_Receiver (hsupa).

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.10.0, Dec. 2008.
- 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 7.9.0, Sept. 2008.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sept. 2008.
- 4. 3GPP Technical Specification TS 25.104, "UTRA (BS) FDD: Radio transmission and Reception," Version 7.10.0, Mar. 2008.
- 5. 3GPP Technical Specification TS 25.141, "Base station conformance test," Version 7.11.0, Mar. 2008.

Description: HSUPA fixed reference channel **Library:** HSUPA, Signal Sources

Parameters

Name	Description	Default	Symbol	Unit	Туре	Range
ROut	Source resistance	DefaultROut		Ohm	real	(0,∞)
RTemp	Temperature	DefaultRTemp		Celsius	real	[-273.15,∞)
TStep	Expression showing how TStep is related to the other source parameters	1/3.84 MHz/SamplesPerChip			string	
FCarrier	Carrier frequency	1950MHz		Hz	real	(0,∞)
Power	Power	dbmtow(24.0)		W	real	[0,∞)
MirrorSpectrum	Mirror spectrum about carrier?: NO, YES	NO			enum	
GainImbalance	Gain imbalance, Q vs I	0.0		dB	real	(-∞,∞)
PhaseImbalance	Phase imbalance, Q vs I	0.0		deg	real	(-∞,∞)
I_OriginOffset	I origin offset (percent)	0.0			real	(-∞,∞)
Q_OriginOffset	Q origin offset (percent)	0.0			real	(-∞,∞)
IQ_Rotation	IQ rotation	0.0		deg	real	(-∞,∞)
SamplesPerChip	Samples per chip	8	S		int	[2,32]
RRC_FilterLength	RRC filter length (chips)	16			int	[2,128]
ScrambleCode	Index of scramble code	0			int	[0,512] for downlink; [0, 16777215] for uplink
Scramble	scramble code type: LONG, SHORT	LONG			enum	
FRC	Fixed reference channel: FRC1, FRC2, FRC3, FRC4, FRC5, FRC6, FRC7, FRC8	FRC1			enum	
TestCase	Test case: E-DPDCH testing, E-DPCCH missed detection testing, E-DPCCH false alarm testing	E-DPDCH testing			enum	
DataPattern	Source data pattern: Random, PN9, PN15, Repeat Bits	Random			enum	
RepeatBitValue	Repeating data value	0x0001			int	[0, 65535]
RepeatBitPeriod	Repeating data period	2			int	[1, 16]
EDPCCH_Boosting	Setting to YES if E- DPCCH_Boosting is configured, otherwise NO: NO, YES	NO			enum	

Pin Inputs

Pin	Name	Description	Signal Type
1	ARQ	automatic repeat request	int
Din	Output		

Pin Outputs

Pin	Name	Description	Signal Type
2	RF	output	timed
3	RSN	retransmission sequence number	int
4	BitED	bits of E-DPDCH	int
5	BitEC	bits of E-DPCCH	int

Notes/Equations

- 1. This subnetwork is used to implement a fixed reference channel in RF for HSUPA uplink.
- 2. The schematic is shown below:

3. For more information about FRC in baseband, see HSUPA_FRC (hsupa).

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.6.0, May 2008. 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD),"
- Version 7.9.0, Sep. 2008.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sep. 2008.
- 4. 3GPP Technical Specification TS 25.104, "Base Station (BS) radio transmission and reception (FDD)," Version 7.10.0, Mar. 2008.
- 5. 3GPP Technical Specification TS 25.141, "Base station (BS) conformance testing (FDD)," V7.11.0, Mar. 2008.

HSUPA_Interleaver

Description: EDCH interleaver **Library:** HSUPA, Multiplexers & Coders

Parameters

Name	Description	Default	Symbol	Туре	Range
EDCH_Category	FDD E-DCH physical layer categories: Category 1, Category 2, Category 3, Category 4, Category 5, Category 6, Category 7	Category 6		enum	
TransBlockSize	Transport block size	2706	L	int	[1,max transport block size]†
ТТІ	Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms		enum	
PuncLimit	Puncturing limit for uplink	0.468		real	[PLmax , 1]‡
maxNumElement_Set0	maximum number of element in Set0	11		int	[1,11]

⁺ Please refer to table of FDD E-DCH physical layer categories.

‡PLmax is 0.33 for Category 6 and is 0.44 for all other categories.

Pin Inputs

Pin	Name	Description	Signal Type					
1	Input	input	int					
Pin Outputs								

Pin	Name	Description	Signal Type
2	Output	output	int

Notes/Equations

- 1. This model is used to implement channel segmentation and interleaving defined in 4.8.5 and 4.8.6 in [2].
- 2. Each firing, Ndata Output tokens are generated while Ndata Input tokens consumed. Determination of Ndata, spreading factor and number of E-DPDCH is described in 4.8.4.1 in [2].
- 3. A simple way to get the value of Ndata, spreading factor and number of E-DPDCH used with wanted TTI and TransBlockSize is to build and run a minimal test design of this model. The information will be displayed in the simulation window.

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.6.0, May 2008.
- 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 7.9.0, Sep. 2008.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sep. 2008.

Advanced Design System 2011.01 - HSUPA Design Library 4. 3GPP Technical Specification TS 25.306, "UE Radio Access capabilities," Version 7.8.0, Sep. 2008.

HSUPA_OCNS

Description: Flexible OCNS generator **Library:** HSUPA, Signal Sources

Parameters

Name	Description	Default	Туре	Range
DPCHNum	downlink DPCH number	16	int	[1,8] for other models; [1,512] for 3GPPHSUPA_OCNS and 3GPPHSUPA_DPCHs
ScrambleCode	index of scramble code	0	int	[0,512] for downlink; [0, 16777215] for uplink
ScrambleOffset	scramble code offset	0	int	[0,15]
ScrambleType	scramble code type: normal, right, left	normal	enum	
SpreadCodeArray	index array of	2 11 17 23 31 38	int	the i _{th} element shall be in
	spread codes	47 55 62 69 78 85 94 125 113 119	array	[0,SpreadFactor[i]-1]; array size shall be equal to code channel number; codes shall be in different OVSF code branch
DataPatternArray	data pattern array: 0-random, 1-PN9, 2-PN15, 3-Repeat Bits	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	int array	[0,1,2,3]; array size shall be equal to code channel number
RepBitValueArray	bits value array to be filled in data sequence	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	int array	[0,255]; array size shall be equal to code channel number
PowerArray	channel power array in decibels	-1 -3 -3 -5 -2 -4 - 8 -7 -4 -6 -5 -9 - 10 -8 -6 0	real array	$(-\infty,\infty)$; array size shall be equal to code channel number
tDPCHOffsetArray	DPCH channel offset array	86 134 52 45 143 112 59 23 1 88 30 18 30 61 128 143	int array	[0,149]; array size shall be equal to DPCH channel number
SpreadFactorArray	orthogonal channel spread factor array	128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128	int array	2 ⁿ , n=1,,9; array size shall be equal to DPCHNum

Pin Outputs

Pin Name Description Signal Type

1 out output data complex

- 1. This model is the flexible orthogonal channel noise simulator.
- 2. Each firing, this model outputs a slot of complex chips that consists of 2560 spread and scrambled complex data bits.
- 3. The number of dedicated channels can be set flexibly from 1 to 512. The dedicated channels of the OCNS signal should be evenly distributed in the code domain; timing

offset should be equidistantly distributed over the dedicated channels; level settings of dedicated channels should be similar.

- 4. The default OCNS model has 16 dedicated channels with channelization codes, timing offsets and level settings as specified in [7] for test model 1.
- 5. ScrambleCode i, ScrambleOffset k, and ScrambleType parameters determine the scrambling code n as follows:

 $n = (16 \times i) + k + m$

- If ScrambleType is normal, m = 0
- If ScrambleType is right, m = 16384
- If ScrambleType is left, m = 8192
- 6. The output signal is normalized to make sure that its RMS value is 1.

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.6.0, May 2008.
- 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 7.9.0, Sep. 2008.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sep. 2008.
- 4. 3GPP Technical Specification TS 25.214, "Physical layer procedures (FDD)," Version 7.9.0, May 2008.
- 5. 3GPP Technical Specification TS 25.101, "UE Radio transmission and Reception (FDD)," Version 7.13.0, Sep. 2008.
- 6. 3GPP Technical Specification TS 25.104, "Base Station (BS) radio transmission and reception (FDD)," Version 7.10.0, Mar. 2008.
- 7. 3GPP Technical Specification TS 25.141, "Base station (BS) conformance testing (FDD)," V7.11.0, Mar. 2008.
- 8. 3GPP Technical Specification TS 34.121, "Radio transmission and reception (FDD)," Version 7.6.0, Sep. 2007.

HSUPA_ParamCalc

Description: EDCH parameter calculator **Library:** HSUPA, Multiplexers & Coders

Parameters

Name	Description	Default	Symbol	Туре	Range
EDCH_Category	FDD E-DCH physical layer categories: Category 1, Category 2, Category 3, Category 4, Category 5, Category 6, Category 7	Category 6		enum	
TransBlockSize	Transport block size	2706	L	int	[1,max transport block size]†
TTI	Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms		enum	
PuncLimit	Puncturing limit for uplink	0.468		real	[PLmax , 1]‡
maxNumElement_Set0	maximum number of element in Set0	11		int	[1,11]

⁺ Please refer to table of FDD E-DCH physical layer categories.

[‡]PLmax is 0.33 for Category 6 and is 0.44 for all other categories.

Pin Outputs

Pin	Name	Description	Signal Type
1	NumED	number of E-DPDCH	int
2	SltF_ED	slot format of E- DPDCH	int

Notes/Equations

- 1. This model is used to calculate E-DPDCH related parameters according to the setting of E-DCH. Each firing, one NumED and one SItF_ED tokens are produced.
- 2. According to [2], the parameters of E-DPDCH such as number of E-DPDCH, slot format of E-DPDCH cannot be inferred easily by parameters of E-DCH such as TTI, TransBlockSize, etc. This model can help get the parameters conveniently.
- 3. The number of E-DPDCH slot format are determined when determining the total number of bits available for the E-DCH transmission per TTI with transport format j: *N* _{*e*,data,j}. *N*_{*e*,data,j} is determined by the following variables:
 - The total number of bits in a TTI before rate matching with transport format j: $N_{e,i}$. The calculation for $N_{e,i}$ will be described below in more detail.
 - The number of bits available to the CCTrCH of E-DCH type on all PhCHs: N_{data}.
 - In the design library, N_{data} are calculated as: NumOfSlots * Ndata
 - The results are listed in the first table below for all possible spreading factors and BPSK modulation scheme.
 NumOfSlots specifies the number of slots in a TTI, NumOfSlots=3 for TTI=2ms; NumOfSlots=15 for TTI=10ms. N_{data} is defined in the second table below.

Advanced Design System 2011.01 - HSUPA Design Library Table1. N_{0,data} for all possible spreading factors and BPSK modulation

Index		0	1	2	3	4	5	6	7	8	9
Ne,data	TTI=2	30	60	120	240	480	960	1920	3840	7680	11520
	TTI=10	150	300	600	1200	2400	4800	9600	19200	38400	57600
SF		256	128	64	32	16	8	4	4	2	4 & 2
Channel Number		1	1	1	1	1	1	1	2	2	2*N4+2*N2

• The set of Ne,data values allowed by the UTRAN and supported by the UE: SET0.

So for TTI=2ms, SET0 can be a subset of {30,60,120,240,480,960,1920,3840,7680,11520} For TTI=10ms, SET0 can be a subset of {150, 300,600,1200,2400,4800,9600,19200, 38400, 57600}.

- TTI defined by parameter TTI.
- PLnon-max defined by parameter PuncLimit.
- PLmax For BPSK modulation, PLmax =0.44 for E-DCH Category 1,2,3,4,5, and PLmax = 0.33 for E-DCH Category 6.
- PLmod, switch is equal to 0.468
- 4. Ne,data,j is determined by an algorithm as illustrated in the pseudocode example below:

```
SET1 = { N_{e,data} in SET0 such that N_{e,data} - N_{e,j} is non negative }
If SET1 is not empty and the smallest element of SET1 requires just one E-DPDCH
   then
  N_{e,data,j} = \min \text{SET1}
Else
   SET2 = { N_{e,data} in SET0 such that N_{e,data} - PL_{non-max} \times N_{ej} is non negative }
   If SET2 is not empty then
       Sort SET2 in ascending order
       N_{e,data} = \min \text{SET2}
       While Ne, data is not the max of SET2 and the follower of Ne, data requires only
          one E-DPDCH do
          N_{e,data} = follower of N_{e,data} in SET2
       End while
       If N_{e,data} is equal to 2 \times M_2 + 2 \times M_4 and N_{e,data} / N_{e,j} \ge PL_{mod switch}
          N_{e,data} = 2 \times N_2 + 2 \times N_4
       End if
       If N_{e,data} is equal to 2 \times N_2 + 2 \times N_4 and N_{e,data} / N_{e,j} \le PL_{mod\_switch}
          N_{e,data} = \max \text{ SET0}
       End if
       N_{e,data,j} = N_{e,data}
   Else
       N_{e,data,j} = \max \text{ SET0} provided that N_{e,data,j} - PL_{max} \times N_{e,j} is non negative
   End if
    End if
```

5. Since the $N_{e,data,j}$ is determined, the number of E-DPDCH and the Spread Factor can be determined by the preceding table. The slot format can be determined by SF by

Slot Format #i	Channel Bit Rate	Bits/Symbol	SF	Bits/	Bits/	Bits/Slot
	(kbps)	М		Frame	Subframe	Ndata
0	15	1	256	150	30	10
1	30	1	128	300	60	20
2	60	1	64	600	120	40
3	120	1	32	1200	240	80
4	240	1	16	2400	480	160
5	480	1	8	4800	960	320
6	960	1	4	9600	1920	640
7	1920	1	2	19200	3840	1280
8	1920	2	4	19200	3840	1280
9	3840	2	2	38400	7680	2560

Table2 E-DPDCH slot formats

the following table:

Notes: when the number of E-DPDCH is 4 case 9 in table 1, the output pin SltF_ED is only 7.

6. Calculation for Ne,j: $N_{e,i}$ specifies the total number of bits in a TTI before rate

Advanced Design System 2011.01 - HSUPA Design Library matching with transport format j and is calculated as:

• $N_{e,j}$ = codeBlkNum * chCodedSize, where, codeBlkNum refers to the number of

code block segmentation and calculated as: *codeBlkNum = ceil((TransBlockSize + Ncrc) / Z), Where Ncrc refer to the size of CRC, and fixed to 24 for E-DCH, Z refers to the maximum code block size and Z = 5114 for E-DCH (turbo coding).

- chCodedSize refers to number of bits in each code block after encoding and calculated as: chCodedSize = 3 * codeBlkSize + 12
- codeBlkSize refers to number of bits in each code block before encoding and calculated as:

```
if (TransBlockSize + Ncrc) < 40
codeBlkSize = 40
else
codeBlkSize = ceil((TransBlockSize + Ncrc) / codeBlkNum)</pre>
```

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 6.7.0, Dec. 2005.
- 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 6.7.0, Dec. 2005.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 6.5.0, Mar. 2006.

HSUPA_PhCH_Demap

Description: EDCH physical channel demapper **Library:** HSUPA, Demultiplexers & Decoders

Parameters

Name	Description	Default	Symbol	Туре	Range
EDCH_Category	FDD E-DCH physical layer categories: Category 1, Category 2, Category 3, Category 4, Category 5, Category 6, Category 7	Category 6		enum	
TransBlockSize	Transport block size	2706	L	int	[1,max transport block size]†
TTI	Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms		enum	
PuncLimit	Puncturing limit for uplink	0.468		real	[PLmax , 1]‡
maxNumElement_Set0	maximum number of element in Set0	11		int	[1,11]

⁺ Please refer to table of FDD E-DCH physical layer categories.

[‡]PLmax is 0.33 for Category 6 and is 0.44 for all other categories.

Pin Inputs

Pin	Name	Description	Signal Type
1	InputM	data for physical channel(s)	multiple real
Pin	Output	S	

Pin Name	Description	Signal	Туре
----------	-------------	--------	------

2 Output output real

Notes/Equations

- 1. This model is used to implement physical channel demapping for HSUPA uplink.
- Each firing, Ndata Output tokens are generated while 7680 InputM tokens are consumed if TTI=2ms is used, or 38400 InputM tokens are consumed if TTI=10ms is used. Determination of Ndata, spreading factor and number of E-DPDCH is described in 4.8.4.1 in [2].
- 3. A simple way to get the value of Ndata, spreading factor and number of E-DPDCH used with wanted TTI and TransBlockSize is to build and run a minimal test design of this model. The information will be displayed in the simulation window.
- 4. The model is the converse of model HSUPA_PhCH_Map. For more information, see HSUPA_PhCH_Map (hsupa).
- 5. All "spreading factor" input chips in each physical channel are averaged to get the symbols. The symbols are then combined to recover the transport channel block.

References

1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 6.7.0, Dec. 2005.

- Advanced Design System 2011.01 HSUPA Design Library 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 6.7.0, Dec. 2005.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 6.5.0, Mar. 2006.

HSUPA_PhCH_Map

Description: EDCH physical channel mapper **Library:** HSUPA, Multiplexers & Coders

Parameters

Name	Description	Default	Symbol	Туре	Range
EDCH_Category	FDD E-DCH physical layer categories: Category 1, Category 2, Category 3, Category 4, Category 5, Category 6, Category 7	Category 6		enum	
TransBlockSize	Transport block size	2706	L	int	[1,max transport block size]†
ТТІ	Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms		enum	
PuncLimit	Puncturing limit for uplink	0.468		real	[PLmax , 1]‡
maxNumElement_Set0	maximum number of element in Set0	11		int	[1,11]

⁺ Please refer to table of FDD E-DCH physical layer categories.

[‡]PLmax is 0.33 for Category 6 and is 0.44 for all other categories.

Pin Inputs

	Pin Name	Description	Signal Type
--	----------	-------------	-------------

1 Input input int

Pin Outputs

Pin	Name	Description	Signal Type
2	OutputM	data for physical channel(s)	multiple real

- 1. This model is used to map the interleaved data into each physical channel defined in 4.8.7 in [2].
- 2. Each firing, 7680 OutputM tokens are generated if TTI=2ms is used, or 38400 OutputM tokens are generated if TTI=10ms is used while Ndata Input token consumed. Determination of Ndata, spreading factor and number of E-DPDCH is described in 4.8.4.1 in [2].
- 3. A simple way to get the value of Ndata, spreading factor, and number of E-DPDCH used with wanted TTI and TransBlockSize is to build and run a minimal test design of this model. The information will be displayed in the simulation window.
- 4. Since synchronous data flow is employed, the input and output token involved in each firing are fixed. But the number of data for OutputM is different if the spreading factor is different. Since the chip rate after spreading is the same for all code channels, a convenient way to resolve this issue is just to repeat the data from symbol rate to chip rate. This way, when spreading code channels, the signal will be multiplied with spreading code directly.
- 5. The bus width of OuputM is the number of E-DPDCH.
- 6. If the number of E-DPDCH is 2, the spreading factor for the two channels are the

same and can only be 4 or 2. If the number of E-DPDCH is 4, the first two channels use spreading code Cch,2,1 and the last two channels use spreading code Cch,4,1.

- 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 6.7.0, Dec. 2005.
 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD),"
- Version 6.7.0, Dec. 2005.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 6.5.0, Mar. 2006.

HSUPA_RateDematch

Description: EDCH rate dematcher **Library:** HSUPA, Demultiplexers & Decoders

Parameters

Name	Description	Default	Symbol	Туре	Range
EDCH_Category	FDD E-DCH physical layer categories: Category 1, Category 2, Category 3, Category 4, Category 5, Category 6, Category 7	Category 6		enum	
TransBlockSize	Transport block size	2706	L	int	[1,max transport block size]†
TTI	Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms		enum	
PuncLimit	Puncturing limit for uplink	0.468		real	[PLmax , 1]‡
RV_Mode	Redundancy version mode: Calculated using RSN, Only index 0	Calculated using RSN		enum	
MaxRSN	Maximum retransmission sequence number	3		int	[0,3]
HARQ_PrcssMode	Way to setting number of HARQ: Depending on TTI, User defined	Depending on TTI		enum	
NumHARQ	Number of HARQ processes	4		int	[2,8]
maxNumElement_Set0	maximum number of element in Set0	11		int	[1,11]
TransBlockIgnored	Transport block Ignored due to system delay	1		int	[0,5]
LLR_Bypass	Bypass LLR Combination or not: NO, YES	NO		enum	

⁺ Please refer to table of FDD E-DCH physical layer categories.

‡PLmax is 0.33 for Category 6 and is 0.44 for all other categories.

Pin Inputs

Pin	Name	Description	Signal Type
1	Input	input	real
2	RSN	retransmission sequence number	int

Pin Outputs

Pin Name Description Signal Type

3 Output output real

- 1. This model is used to implement rate dematch for HSUPA uplink.
- Each firing, ((TransBlockSize + number of padding bits) * 3 + code block number * 12) Output tokens are generated while Ndata Input tokens are consumed. Determination of Ndata, spreading factor, and number of E-DPDCH is described in 4.8.4.1 in [2].

- 3. A simple way to get the value of code block number, code block size and the number of padding bits and their relationship with the value of TransBlockSize is just to run the model HSUPA_CodeBlkSeg with wanted TransBlockSize in a minimal runnable design. The information will then be displayed in the simulation window.
- 4. A simple way to get the value of Ndata, spreading factor and number of E-DPDCH used with wanted TTI and TransBlockSize is to build and run a minimal test design of this model. The information will be displayed in the simulation window.
- 5. This model implements the converse operation of HSUPA_RateMatch. For more information, see *HSUPA RateMatch* (hsupa).
- 6. The received signal for each HARQ process is buffered in this model. If the input of RSN is 0, current input data will be stored into the buffer of the current HARQ process directly. If the input of RSN is larger than 0, it means the received signal is a redundancy version and there is a previous version stored in the buffer of the current HARQ process. Versions of received signal are combined and then stored into the buffer of the current HARQ process are then fed into channel decoder(s).
- 7. Since the soft combination described above depends on HARQ process and rate dematch is implemented TTI by TTI, the beginning of the first HARQ process must be known to the model. Generally, receiver may introduce some delays into data stream. The value of delay shall be sent to this model by setting parameter TransBlockIgnored.

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.10.0, Dec. 2008.
- 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 7.9.0, Sept. 2008.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sept. 2008.

HSUPA_RateMatch

Description: EDCH rate matcher **Library:** HSUPA, Multiplexers & Coders

Parameters

Name	Description	Default	Symbol	Туре	Range
EDCH_Category	FDD E-DCH physical layer categories: Category 1, Category 2, Category 3, Category 4, Category 5, Category 6, Category 7	Category 6		enum	
TransBlockSize	Transport block size	2706	L	int	[1,max transport block size]†
TTI	Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms		enum	
PuncLimit	Puncturing limit for uplink	0.468		real	[PLmax , 1]‡
RV_Mode	Redundancy version mode: Calculated using RSN, Only index 0	Calculated using RSN		enum	
MaxRSN	Maximum retransmission sequence number	3		int	[0,3]
HARQ_PrcssMode	Way to setting number of HARQ: Depending on TTI, User defined	Depending on TTI		enum	
NumHARQ	Number of HARQ processes	4		int	[2,8]
maxNumElement_Set0	maximum number of element in Set0	11		int	[1,11]

[†] Please refer to table of FDD E-DCH physical layer categories.[‡]PLmax is 0.33 for Category 6 and is 0.44 for all other categories.

Pin Inputs

Pin	Name	Description	Signal Type
1	Input	input	int
2	RSN	retransmission sequence number	int

Pin Outputs

Pin	Name	Description	Signal Type	
~	<u> </u>			ł

3 Output output int

- 1. This model is used to implement rate match defined in 4.8.4 in [2] for HSUPA uplink
- 2. Each firing, Ndata Output tokens are generated while ((TransBlockSize + number of padding bits) * 3 + code block number * 12) Input tokens consumed. Determination of Ndata, spreading factor, and number of E-DPDCH is described in 4.8.4.1 in [2].
- 3. A simple way to get the value of code block number, code block size, and the number of padding bits and their relationship with the value of TransBlockSize is to run the model HSUPA_CodeBlkSeg with wanted TransBlockSize in a minimal runnable design. The information will then be displayed in the simulation window.

- 4. A simple way to get the value of Ndata, spreading factor, and number of E-DPDCH used with wanted TTI and TransBlockSize is to build and run a minimal test design of this model. The information will be displayed in the simulation window.
- 5. If the value of RV_Mod is set to "Calculated using RSN", the RSN input, the NumHARQ value, and current TTI number will be used to calculate the RV value according to Table 16 of Relation between RSN value and E-DCH RV Index in 4.9.2.2 in [2].
- 6. The table shows the Relation between RSN value and E-DCH RV Index. If HARQ_PrcssMode is set to "Depending on TTI", NumHARQ is set to 8 for TTI 2ms and 4 for TTI 10 ms. Otherwise, the user can set the value of NumHARQ.

	N _{sys} / N _{e,data,j} <1/2	1/2 = N _{sys} / N _{e,data,j}
RSN Value	E-DCH RV Index	E-DCH RV Index
0	0	0
1	2	3
2	0	2
3	[ÎTTIN/N _{ARQ} ° mod 2] x 2	ÎTTIN/N _{ARQ} ° mod 4

7. The process of bit separation, rate match with specific RV value, and bit collection can be found in 4.8.4.2-4.8.4.4 in [2].

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.6.0, May 2008.
- 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 7.9.0, Sep. 2008.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sep. 2008.

HSUPA_RF_EVM

Description: EVM and Phase Discontinuity Measurements **Library:** HSUPA, Measurement

Parameters

Name	Description	Default	Unit	Туре	Range
RLoad	input resistance	DefaultROut	Ohm	real	(0,∞)
RTemp	temperature of resistor, in celsius	DefaultRTemp		real	[-273.15,∞)
ExcessBW	excess bandwidth of raised cosine filters	0.22		real	(0.0,1.0)
FilterLength	length of raised cosine filters in number of symbols	16		int	[1,∞]
SamplesPerChip	samples per chip	8		int	[1,256]
LinkDir	link direction: Downlink, Uplink	Uplink		enum	
ScrambleCode	index of scramble code	0		int	[0,511] for downlink; [0,16777215] for uplink
ULScrambleType	uplink scramble code type: LONG, SHORT	LONG		enum	
ScrambleOffset	scramble offset in downlink channels	0		int	[0,15]
DLScrambleType	downlink scramble code type: Normal, RightAlternate, LeftAlternate	Normal		enum	
SpreadCode	index of spread code	0		int	[0,255] for uplink DPCCH; [0,SF- 1] for downlink; SF is set by SlotFormat
SlotFormat	slot format	0		int	[0,5] for uplink DPCCH; [0,16] for downlink DPCH
StartSlot	number of slot to be ignored	0		int	[0,∞)
SlotNum	number of slots measured	2		int	[1,15]
SCH	switch for SCH: OFF, ON	ON		enum	
СРІСН	switch for CPICH: OFF, ON	OFF		enum	
DUT_DelayBound	Search length	0.00001 sec	sec	real	(0,(400.0/3840000))
EVMValue	EVM value expression options: EVM_Ratio, EVM_Percent	EVM_Percent		enum	
Correct_IQ_Offset	switch for IQ offset correction: NO, YES	YES		enum	
ExcludeTransition	select YES for predictable power changes: NO, YES	YES		enum	

Pin Inputs

Pin Name		Description	Signal Type	
1	RFin	input RF signal	timed	
2	ref	reference signals	complex	

Notes/Equations

0	This component is obsolete for new design.		
	Please use the improved HSUPA_EVM (hsupa) for new design work.		

1. This subnetwork model measures EVM and Phase Discontinuity that are used to evaluate modulation accuracy.

The schematic for this subnetwork is shown below.

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.6.0, May 2008.
- 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 7.9.0, Sep. 2008.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sep. 2008.
- 4. 3GPP Technical Specification TS 25.214, "Physical layer procedures (FDD)," Version 7.9.0, May 2008.
- 5. 3GPP Technical Specification TS 25.101, "UE Radio transmission and Reception (FDD)," Version 7.13.0, Sep. 2008.
- 6. 3GPP Technical Specification TS 25.104, "Base Station (BS) radio transmission and reception (FDD)," Version 7.10.0, Mar. 2008.
- 7. 3GPP Technical Specification TS 25.141, "Base station (BS) conformance testing (FDD)," V7.11.0, Mar. 2008.
- 8. 3GPP Technical Specification TS 34.121, "Radio transmission and reception (FDD)," Version 7.5.0, Jun. 2007.
HSUPA_RF_OutputPower

Description: HSUPA output power measurements **Library:** HSUPA, Measurement

Parameters

Name	Description	Default	Symbol	Unit	Туре	Range
RLoad	Input resistance	DefaultRLoad		Ohm	real	(0,∞)
FCarrier	Carrier frequency	1950MHz		Hz	real	(0,∞)
SamplesPerChip	Samples per chip	8	S		int	[2,32]
ScrambleCode	Index of scramble code	0			int	[0,512] for downlink; [0, 16777215] for uplink
Scramble	scramble code type: LONG, SHORT	LONG			enum	
SlotFormat	Slot format	0			int	[0,5] for uplink DPCCH
CM_k	Slope factor for calculating cubic metric	1.56			real	[1.0,3.0]
SearchLength	Search length	.00001 sec		sec	real	(0,(400.0/3840000))
StartSlot	number of slot to be ignored	0			int	[0,∞)
SlotNum	number of slots measured	1			int	[1,30]

Pin Inputs

Pin	Name	Description	Signal Type
1	RF_In	input	timed
2	Ref	input	complex
	/ .	and a second	

Notes/Equations

- 1. This model is used to calculate output power and cubic metrics.
- 2. The average period is one slot; SlotNum specifies the number of slots to be measured.
- 3. Test signals are aligned at the specified slot boundary to ensure that the power average is based on a single slot.
- 4. The schematic for this subnetwork is shown below:

5. Cubic Metric (CM) is based on the UE transmit channel configuration and is given by

Advanced Design System 2011.01 - HSUPA Design Library

CM =CEIL{\ $[20 * log10 ((v_norm ³) _{rms}) - 20 * log10 ((v_norm_ref ³) _{rms})] / k, 0.5}$ where:

- CEIL{ x, 0.5 } means rounding upwards to closest 0.5dB, i.e. CMŒ[0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5]
- + k is 1.85 for signals where all channelisation codes meet the following criteria C $_{\rm SF,\ N}$ where N < SF/2
- k is 1.56 for signals where any channelisation code meet the following criteria C $_{SF,\ N}$ where N \geq SF/2
- v_norm_ref is the normalized voltage waveform of the reference signal (12.2 kbps AMR Speech) and 20 * log10 ((v_norm_ref 3) $_{rms}$ is 1.5237 dB.
- 6. MPR equals the larger value of CM-1 and 0.
- 7. For more information, see *3GPPFDD_Synch* (wcdma3g) and *WCDMA3G_RF_PowMeas* (wcdma3g) in the *3GPP W-CDMA Design Library* (wcdma3g) documentation.

References

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 6.7.0, Dec. 2005.
- 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 6.7.0, Dec. 2005.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 6.5.0, Mar. 2006.
- 4. 3GPP Technical Specification TS 25.101, "UE Radio transmission and Reception (FDD)," Version 6.11.0, Mar. 2006.

HSUPA_SignatureSqn

Description: HSUPA signature sequence generator **Library:** HSUPA, Multiplexers & Coders

Parameters

Name	Description	Default	Symbol	Туре	Range
SequenceIndex	Signature sequence index	0	I	int	[0,39]

Pin Outputs

Pin Name Description Sig	jnal Type
--------------------------	-----------

1 Output output

```
Notes/Equations
```

- 1. This model generates the E-DCH Relative Grant Channel (E-RGCH) or the E-DCH Hybrid ARQ Indicator Channel (E-HICH) signature sequence according to SequenceIndex as defined in [1].
- 2. Each firing, one token is produced.

real

3. The orthogonal signature sequences Css,40,m(i) is given by the following table and the index m(i) in slot i is given by <u>E-HICH and E-RGCH signature hopping pattern</u>.

Css,40,0	- 1	- 1	- 1	1	- 1	1	- 1	- 1	1	1	- 1	- 1	1	- 1	1	1	- 1	1	1	-1	- 1	1	- 1	1	- 1	- 1	1	1	1	1	1	- 1	- 1	- 1						
Css,40,1	- 1	1	1	- 1	- 1	1	1	1	- 1	- 1	1	- 1	1	1	- 1	- 1	- 1	- 1	1	1	1	- 1	- 1	- 1	- 1	1	- 1	1	1	- 1	1	1	- 1	-						
Css,40,2	- 1	- 1	- 1	1	- 1	1	1	1	- 1	- 1	- 1	- 1	1	- 1	- 1	1	1	- 1	- 1	1	1	- 1	1	1	1	- 1	- 1	1	1	1	- 1	1	- 1							
Css,40,3	1	- 1	- 1	- 1	- 1	- 1	- 1	1	1	1	- 1	1	- 1	1	- 1	1	- 1	- 1	1	1	- 1	1	- 1	- 1	1	1	- 1	1	- 1	- 1	1	1	- 1	- 1	1	- 1	- 1	- 1	- 1	- 1
Css,40,4	1	1	1	- 1	- 1	1	- 1	1	- 1	- 1	1	1	1	- 1	1	1	1	1	1	1	- 1	1	1	1	- 1	- 1	- 1	1	1	- 1	1	- 1	1	- 1	1	1	- 1	1	- 1	- 1
Css,40,5	- 1	1	- 1	- 1	1	1	1	- 1	1	1	- 1	1	1	1	- 1	1	1	1	- 1	- 1	1	- 1	- 1	1	- 1	1	- 1	1	- 1	- 1	1	- 1	1	- 1	- 1	- 1	- 1	1	1	- 1
Css,40,6	1	1	- 1	- 1	- 1	1	1	- 1	1	1	- 1	- 1	1	- 1	- 1	- 1	- 1	1	1	- 1	1	1	1	- 1	1	- 1	1	- 1	1	- 1	- 1	1	1	- 1	1	- 1	- 1	1	- 1	1
Css,40,7	- 1	1	- 1	1	1	1	- 1	- 1	- 1	- 1	- 1	1	1	1	1	- 1	- 1	- 1	1	- 1	- 1	- 1	1	- 1	1	1	- 1	- 1	1	1	1	1	- 1	- 1	1	1	- 1	1	1	- 1
Css,40,8	1	1	- 1	1	1	- 1	1	1	1	1	- 1	- 1	- 1	- 1	1	- 1	1	- 1	1	1	1	1	- 1	1	- 1	- 1	- 1	- 1	- 1	1	- 1	- 1	- 1	- 1	1	1	- 1	1	1	- 1
Css,40,9	- 1	1	- 1	- 1	- 1	- 1	1	- 1	- 1	- 1	- 1	1	- 1	- 1	1	1	1	- 1	1	- 1	1	- 1	- 1	1	1	- 1	1	1	- 1	- 1	1	1	- 1	1	1	1	1	1	- 1	1
Css,40,10	- 1	1	1	- 1	1	1	- 1	1	1	1	1	- 1	1	- 1	1	1	- 1	- 1	- 1	1	- 1	- 1	- 1	- 1	1	- 1	1	1	- 1	- 1	- 1	1	- 1	- 1	- 1	1	- 1	1	1	1

E-RGCH and E-HICH Signature Sequences

Advanced Design System 2011.01 - HSUPA Design Library

Css,40,11	-	1	-	-	-	-	-	1	1	va 1	11C	-	-		1	3 <u>-</u>	1	1	-	1	- 	/1 -	- 1 1	130	1	1	-	- -	1 1	- 	-	1	1	1	-	1	1	1	-	-
	1		1	1	1	1	1				1	1	1			1			1		1	1					1	1		1	1				1				1	1
Css,40,12	- 1	- 1	- 1	- 1	1	- 1	1	1	- 1	- 1	- 1	- 1	- 1	1	1	1	- 1	1	1	1	1	- 1	1	- 1	- 1	1	1	1	1	- 1	-1	- 1	1	- 1	1	1	- 1	- 1	1	1
Css,40,13	1	1	1	1	- 1	- 1	1	- 1	- 1	- 1	1	- 1	- 1	1	1	1	- 1	1	- 1	- 1	1	1	- 1	- 1	1	1	- 1	1	- 1	1	- 1	1	1	- 1	- 1	1	- 1	1	- 1	- 1
Css,40,14	- 1	1	1	1	- 1	- 1	- 1	- 1	1	1	1	- 1	- 1	1	- 1	1	1	- 1	1	- 1	- 1	- 1	1	1	- 1	1	1	1	1	1	- 1	- 1	- 1	- 1	1	- 1	- 1	1	- 1	1
Css,40,15	- 1	- 1	1	1	- 1	1	1	1	1	1	1	1	1	1	1	- 1	1	1	1	1	1	- 1	- 1	1	1	1	1	- 1	- 1	1	1	1	1	- 1	1	1	- 1	- 1	- 1	1
Css,40,16	1	- 1	- 1	- 1	- 1	1	- 1	- 1	- 1	- 1	- 1	- 1	1	1	1	- 1	1	- 1	- 1	- 1	- 1	1	- 1	1	- 1	1	1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	1	- 1	- 1	- 1	1
Css,40,17	1	- 1	1	- 1	1	1	1	- 1	1	1	1	- 1	1	1	1	1	1	- 1	1	- 1	1	1	1	1	1	1	- 1	1	1	- 1	- 1	1	- 1	1	1	1	1	- 1	1	- 1
Css,40,18	1	1	- 1	1	- 1	1	1	1	1	1	- 1	1	1	1	1	1	- 1	- 1	- 1	1	1	1	1	- 1	- 1	1	1	1	1	1	1	- 1	- 1	1	- 1	1	1	1	- 1	1
Css,40,19	1	1	- 1	1	1	1	-1	1	- 1	- 1	- 1	- 1	1	1	- 1	1	1	1	1	1	- 1	1	- 1	1	1	1	1	1	- 1	1	- 1	1	1	1	1	- 1	1	1	1	1
Css,40,20	1	1	1	- 1	1	1	- 1	1	- 1	1	- 1	1	- 1	- 1	-	1	- 1	- 1	1	- 1	1	- 1	- 1	1	1	1	1	- 1	1	1	- 1	- 1	1	1	-1	1	- 1	- 1	- 1	- 1
Css,40,21	- 1	1	1	- 1	- 1	- 1	- 1	1	- 1	1	- 1	- 1	1	- 1	- 1	1	1	- 1	- 1	- 1	1	1	1	- 1	- 1	1	- 1	- 1	- 1	1	1	1	1	- 1	1	1	1	- 1	1	1
Css,40,22	- 1	- 1	- 1	1	- 1	- 1	- 1	1	- 1	1	1	- 1	1	1	- 1	- 1	- 1	- 1	1	- 1	1	1	- 1	1	1	- 1	- 1	1	1	- 1	1	- 1	1	1	- 1	1	- 1	1	1	1
Css,40,23	1	- 1	- 1	- 1	- 1	1	1	1	1	- 1	1	1	- 1	- 1	- 1	- 1	1	- 1	- 1	- 1	- 1	- 1	1	- 1	1	1	- 1	1	- 1	1	- 1	- 1	1	1	1	1	- 1	1	1	1
Css,40,24	- 1	- 1	- 1	1	1	1	- 1	- 1	1	- 1	1	- 1	- 1	- 1	- 1	1	1	- 1	1	1	1	1	1	- 1	1	1	1	- 1	- 1	- 1	1	- 1	1	- 1	- 1	1	1	1	- 1	- 1
Css,40,25	- 1	1	- 1	- 1	1	- 1	- 1	- 1	1	- 1	1	1	1	- 1	- 1	- 1	- 1	1	1	1	1	1	1	1	- 1	1	- 1	1	- 1	1	- 1	1	- 1	1	- 1	1	- 1	- 1	- 1	1
Css,40,26	- 1	- 1	1	1	1	1	1	1	- 1	1	- 1	1	- 1	- 1	1	- 1	- 1	- 1	1	- 1	- 1	1	1	1	- 1	1	- 1	1	- 1	- 1	- 1	1	1	- 1	- 1	- 1	1	1	- 1	1
Css,40,27	1	- 1	1	- 1	- 1	1	- 1	1	1	- 1	- 1	- 1	- 1	1	- 1	- 1	- 1	1	1	- 1	1	- 1	1	1	- 1	- 1	1	1	- 1	1	1	1	- 1	- 1	- 1	1	1	1	1	- 1
Css,40,28	1	1	- 1	1	1	1	- 1	1	1	- 1	1	- 1	- 1	1	1	1	- 1	- 1	- 1	- 1	1	- 1	1	1	- 1	- 1	- 1	- 1	- 1	- 1	1	1	1	1	1	- 1	- 1	- 1	- 1	1
Css,40,29	- 1	1	- 1	- 1	- 1	1	- 1	- 1	- 1	1	1	1	- 1	1	1	- 1	- 1	- 1	- 1	1	1	1	1	1	1	- 1	1	1	- 1	1	- 1	- 1	1	- 1	1	- 1	1	- 1	1	- 1
Css,40,30	- 1	1	1	- 1	1	- 1	1	1	1	- 1	- 1	- 1	1	1	1	- 1	1	- 1	1	- 1	- 1	1	1	- 1	1	- 1	1	1	- 1	1	1	- 1	1	1	- 1	- 1	- 1	- 1	- 1	- 1
Css,40,31	- 1	1	- 1	- 1	- 1	1	1	1	1	- 1	1	- 1	- 1	- 1	1	1	- 1	1	1	- 1	- 1	1	- 1	1	1	1	- 1	- 1	1	1	1	- 1	- 1	- 1	- 1	- 1	1	- 1	1	1
Css,40,32	1	1	1	1	- 1	- 1	1	- 1	1	- 1	- 1	1	1	1	- 1	1	- 1	- 1	1	1	- 1	- 1	1	1	1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	1	- 1	- 1	1	1	- 1	1	1
Css,40,33	- 1	- 1	- 1	- 1	1	- 1	1	1	1	- 1	1	1	1	1	- 1	1	- 1	- 1	- 1	- 1	- 1	1	- 1	1	- 1	- 1	1	- 1	1	1	- 1	1	1	- 1	1	1	1	1	- 1	- 1
Css,40,34	1	- 1	- 1	- 1	1	- 1	- 1	1	- 1	1	1	1	1	1	1	1	1	1	1	- 1	1	- 1	1	- 1	1	- 1	- 1	- 1	- 1	1	- 1	- 1	- 1	- 1	- 1	- 1	1	1	- 1	1
Css,40,35	- 1	- 1	1	1	- 1	- 1	- 1	1	1	- 1	- 1	1	1	- 1	1	1	- 1	1	- 1	- 1	1	1	1	1	1	1	1	- 1	- 1	- 1	- 1	- 1	- 1	1	1	- 1	- 1	1	1	- 1
Css,40,36	- 1	1	1	1	1	1	- 1	1	1	- 1	- 1	1	- 1	1	- 1	- 1	1	1	- 1	- 1	1	1	- 1	- 1	1	- 1	- 1	1	1	- 1	- 1	- 1	- 1	- 1	1	1	1	- 1	- 1	1
Css,40,37	1	- 1	1	- 1	1	- 1	- 1	- 1	1	- 1	- 1	- 1	1	- 1	1	- 1	- 1	- 1	- 1	1	1	- 1	- 1	1	1	1	- 1	1	1	1	1	- 1	1	- 1	1	- 1	1	1	- 1	1
Css,40,38	- 1	- 1	1	- 1	1	1	1	- 1	- 1	1	- 1	- 1	- 1	1	- 1	1	- 1	1	- 1	1	- 1	1	1	1	1	- 1	- 1	- 1	- 1	1	1	- 1	- 1	1	1	1	- 1	1	- 1	1
Css,40,39	-	-	1	-	-	1	-	-	1	-	-	1	-	1	1	1	1	-	1	1	1	1	-	-	-	-	-	-	1	1	-	1	1	1	-	-	-	1	1	1

112

E-HICH and E-RGCH signature hopping pattern

Sequence index I	Row index n		
	i mod 3 = 0	i mod 3 = 1	i mod 3 = 2
0	0	2	13
1	1	18	18
2	2	8	33
3	3	16	32
4	4	13	10
5	5	3	25
6	6	12	16
7	7	6	1
8	8	19	39
9	9	34	14
10	10	4	5
11	11	17	34
12	12	29	30
13	13	11	23
14	14	24	22
15	15	28	21
16	16	35	19
17	17	21	36
18	18	37	2
19	19	23	11
20	20	39	9
21	21	22	3
22	22	9	15
23	23	36	20
24	24	0	26
25	25	5	24
26	26	7	8
27	27	27	17
28	28	32	29
29	29	15	38
30	30	30	12
31	31	26	7
32	32	20	37
33	33	1	35
34	34	14	0
35	35	33	31
36	36	25	28
37	37	10	27
38	38	31	4
39	39	38	6

References

Advanced Design System 2011.01 - HSUPA Design Library

- 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.6.0, May 2008.
 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD),"
- Version 7.9.0, Sep. 2008.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sep. 2008.

HSUPA_Spread

Description: HSUPA spreader **Library:** HSUPA, Multiplexers & Coders

Parameters

Name	Description	Default	Туре
DPDCH_Configured	Setting to YES if DPDCH is configured, otherwise NO: NO, YES	NO	enum
HSDPCCH_Configured	Setting to YES if HS-DPCCH is configured, otherwise NO: NO, YES	NO	enum
Pin Inputs			

Pin	Name	Description	Signal Type
1	DPDCH	DPDCH	int
2	DPCCH	DPCCH	int
3	EDPCCH	E-DPCCH	int
4	HSDPCCH	HS-DPCCH	int
5	SltF_D	slot format of DPDCH	int
6	NumED	number of E-DPDCH	int
7	SItF_ED	slot format of E-DPDCH, only valid when number of E-DPDCH is 1 or 2.	int
8	GainD	gain factor of DPDCH over DPCCH, in dB	real
9	GainED	gain factor of E-DPDCH over DPCCH, in dB	real
10	GainEC	gain factor of E-DPCCH over DPCCH, in dB	real
11	GainHS	gain factor of HS-DPCCH over DPCCH, in dB	real
12	EDPDCH	E-DPDCH	multiple real
Pin	Outputs		

Pin Name Description Signal Type

13 Output output complex

Notes/Equations

1. This model is used to spread, power-scale, and multiplex uplink signals according to [3].

- 2. Each firing, 2560 Output tokens are generated when 2560 DPDCH tokens, 10 DPCCH tokens, 10 EDPCCH tokens, 10 HSDPCCH tokens, 1 SltF_D token, 1 NumED token, 1 SltF_ED token, 1 GainD token, 1 GainED token, 1 GainEC token, 1 GainHS token and 2560 EDPDCH tokens are consumed.
- 3. The input of DPDCH and E-DPDCH must be repeated to chip rate before it is fed into this model. The spreading code will be multiplied directly with input signal.
- 4. Table 0 of Maximum number of simultaneous uplink dedicated channels in [3] is copied here in **Maximum number of simultaneous uplink dedicated channels** as shown below. Since whenever there are enhanced uplink channels, the maximum number of DPDCH is less than 2, the input of DPDCH is not designed as a multiple port.

Configuration #	DPDCH	HS-DPCCH	E-DPDCH	E-DPCCH
1	6	1	-	-
2	1	1	2	1
3	-	1	4	1

5. SltF_D is the slot format for DPDCH, which can be found in 5.2.1.1[1]. This input is used to determine SF of DPDCH. It determines the spreading code at the same time because according to [3], when only one DPDCH is to be transmitted, DPDCH1 shall be spread by code cd,1 = C $_{ch,SF,k}$ where SF is the spreading factor of DPDCH1 and k

= SF / 4.

 Num_ED and SItF_ED are the number and slot format of E-DPDCH, which can be found in 5.2.1.3[1]. SItF_ED is used to determine SF of each E-DPDCH. When Num_ED is 4, SItF_ED is ignored and the spreading code of E-DPDCH1 and E-DPDCH2 is C _{ch,2,1}. The spreading code of E-DPDCH3 and E-DPDCH4 is always C

ch,4,1

7. If parameter DPDCH_Configured is set to YES, N $_{max-dpdch}$ is 1, while if it is set to

NO, N $_{max-dpdch}$ is 0. Table 1E of Channelisation code for E-DPDCH in [3] is copied

N _{max-dpdch}	E-DPDCH _k	Channelisation code C _{ed,k}
0	E-DPDCH 1	C _{ch,SF,SF/4} if SF \geq 4C _{ch,2,1} if SF = 2
	E-DPDCH 2	$C_{ch,4,1}$ if SF = 4C $_{ch,2,1}$ if SF = 2
	E-DPDCH 3 E-DPDCH 4	C _{ch,4,1}
1	E-DPDCH 1	C _{ch,SF,SF/2}
	E-DPDCH 2	C $_{ch,4,2}$ if SF = 4C $_{ch,2,1}$ if SF = 2

into **Channelisation code for E-DPDCH** as shown below:

8. Related information in Table 1D of Channelisation code of HS-DPCCH in [3] is copied into **Channelisation code of HS-DPCCH** as shown below:

Nmax-dpdch	Channelisation code chs
0	C _{ch,256,33}
1	C _{ch,256,64}

- The DPCCH is defined as power reference of other uplink channels in this model. For example, GainED is the gain of power level of E-DPDCH over DPCCH in dB units. The factor multiplied to the data of DPCCH is 1, while the factor multiplied to the data of each E-DPDCH is 20*log(GainED).
- 10. GainED is gain for each E-DPDCH. If there are four E-DPDCHs, GainED is the gain for E-DPDCH $_3$ and E-DPDCH $_4$. The gain for E-DPDCH $_1$ and E-DPDCH $_2$ is GainED+3dB.

For more information, please refer to 5.1.2.5B.2.3 in [4].

11. After spreading and power scaling, the uplink channels will be mapped to IQ

Advanced Design System 2011.01 - HSUPA Design Library

branches. DPCCH is always transmitted in Q branch; E-DPCCH is always transmitted in I branch; HS-DPCCH is always transmitted in Q branch; DPDCH 1 is always

transmitted in I branch; Table 1C of the IQ branch mapping for E-DPDCH in [3] is copied into **IQ branch mapping for E-DPDCH** as shown below:

N _{max-dpdch}	HS-DSCH configured	E-DPDCH _k	iq _{ed,k}
0	No/Yes	E-DPDCH 1	1
			j
		E-DPDCH 3	1
		E-DPDCH 4	j
1 No 1 Yes		E-DPDCH 1	j
		E-DPDCH 2	1
		E-DPDCH 1	1
		E-DPDCH 2	j

^{12.} The uplink signal is normalized to ensure its RMS value is 1.

References

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.6.0, May 2008.
 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD),"
- Version 7.9.0, Sep. 2008.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sep. 2008.
- 4. 3GPP Technical Specification TS 25.214, "Physical layer procedures (FDD)," Version 7.9.0, May 2008.

Description: HSUPA uplink receiver **Library:** HSUPA, Receivers

Parameters

Advanced Design System 2011.01 - HSUPA Design Library

Name	Description	Default	Туре	Range
SlotFormat	slot format	0	int	+
ScrambleCode	index of scramble code	0	int	[0,512] for downlink; [0, 16777215] for uplink
Scramble	scramble code type: LONG, SHORT	LONG	enum	
SampleRate	sample rate	8	int	[1,256]
MaxDelaySample	maximum delay boundary, in terms of samples	0	int	[0,2559] for RAKE receiver; [0,102400] in other models
ChannelType	select the channel type to be processed: CH_GAUSSIAN, CH_FADING	CH_GAUSSIAN	enum	
ChannelInfo	fading channel information source: Known, Estimated	Known	enum	
ChannelInfoOffset	offset between spread code and channel information in terms of sample	0	int	[0,MaxDelaySample]
PathSearch	path search frequency: EverySlot, Once	Once	enum	
SearchMethod	path search method: Coherent, NonCoherent, Combined	Coherent	enum	
SearchSlotsNum	number of slots for path search	1	int	[1,12]
PathNum	number of Rake fingers	1	int	[1,6]
PathDelaySample	delay for each finger, in terms of samples	0	int array	[0,MaxDelaySample]; array size shall be equal to PathNum
EstSlotsNum	Number of slots for channel estimation	1	int	[1,3]
UseMovingEstWindow	If use moving window in channel estimation: NO, YES	NO	enum	
UsePastSearch	If use past samples for path searching: NO, YES	NO	enum	
ТТІ	Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms	enum	
DPDCH_Configured	Setting to YES if DPDCH is configured, otherwise NO: NO, YES	NO	enum	
HSDPCCH_Configured	Setting to YES if HS- DPCCH is configured, otherwise NO: NO, YES	NO	enum	

⁺ [0:5] for uplink DPCCH;
[0:16] for downlink DPCH;
[0:17] for downlink SCCPCH;
[0:5] for uplink PCPCH (Ver 03_00);
[0:2] for uplink PCPCH (Ver 03_02).

Pin Inputs

Advanced Design System 2011.01 - HSUPA Design Library

Pin	Name	Description	Signal Type
1	inChip	input data stream	complex
2	NumED	number of E-DPDCH	int
3	SItF_ED	slot format of E-DPDCH	int
4	inChM	input known channel information	multiple complex

Pin Outputs

Pin	Name	Description	Signal Type
5	EDPCCH	E-DPCCH	real
6	PwrN	power of noise estimated from DPCCH	real
7	SlotIndex	slot number	int
8	Delay	path delay	int
9	EDPDCH	E-DPDCH	multiple real
10			

10 outChM output estimated channel information multiple complex

Notes/Equations

- 1. This model is used to demodulate and despread HSUPA uplink signals at a 3.84MHz chip rate. Such signals can be corrupted by multipath fading channel and additive Gaussian noise.
- Each firing, 2560 EDPDCH tokens, 10 EDPCCH tokens, 1 DPCCH tokens, 1 SlotIndex token, 1 Delay token, and 2560 outChM tokens are produced when 2560*SamplesPerChip inChip and inChM tokens, 1 Num_ED token, and 1 SltF_ED token are consumed.
- 3. For information about the parameters related to the configuration of uplink channels, see *HSUPA_Spread* (hsupa).
- 4. To despread and demodulate a CDMA signal, the channel information and path delay information must be determined. Errors in channel estimation and path search deteriorate the receiver performance.
- 5. The signal processing flow inside the model is:
 - Input data until slots specified by SearchSlotsNum are received
 - Slot index identification
 - IQ offset correction to eliminate any DC component.
 - Multipath search
 - Channel estimation for each path
 - Decode and despread of individual path
 - SNR estimation for individual path
 - Multipath combination
 - Output decoded data and SlotIndex to align at the frame boundary
 - Output Delay and channel information (slots delayed are specified by SearchSlotsNum)
- 6. This model can be configured to work under ideal conditions; in other words, the real time channel information can be input from input pin and the path delay information can be set by the PathDelaySample parameter.
- 7. The ChannelInfo parameter selects the channel information source from input or estimated inside the model. The delay for each path is expressed in terms of samples as individual elements in the array.
- 8. f path delay is specified, the SearchSlotsNum is 1. If the first element in PathDelaySample is 0, the path search is performed inside the receiver model. Otherwise, the numbers specified by PathDelaySample are taken as the delays for each path.
- 9. The path search is performed by correlating the received signals with the spreading code specified in a window whose size is set by MaxDelaySample. The correlations at different offsets are ranked and the top ones are assumed to be the offsets where the paths could occur.
- 10. If SearchMethod = Coherent, the correlation will be performed at the pilot bits only.

If SearchMethod = NonCoherent, the correlation will be performed on the data field. Note that the coherent correlation obtained over pilot bits is unbiased, while the noncoherent correlation is biased. If SearchMethod = Combined, the coherent and noncoherent correlations are summed as the matrix for path resolution.

11. Another factor that impacts the correlation is the SearchSlotsNum parameter. This parameter sets the number of slots over which the correlation is accumulated. More slots are necessary for a reliable path resolution for signals with noise contamination. Usually, six slots are required if E $_{\rm b}$ /N $_{\rm o}$ is 2 dB. The user must determine the

appropriate slot number and search method for the best trade-off between accuracy and speed.

- 12. If UsePastSearch = YES, the slots used for searching will use previous slots. For example, if SearchSlotsNum is set to 3 and the index of current slot is 0, then slot -1, 0, 1 will be used for path searching. If SearchSlotsNum is set to 4, slot -1, 0, 1, 2 will be used. slot -1 is the previous slot of slot 0, while slot 1 is the next slot of slot 0,...; If UsePastSearch = NO, slot 0, 1, 2, 3 will be used for path searching.
- 13. The estimated path delay is output from the pin Delay after slots specified by SearchSlotsNum are received.
- 14. Because path search results could be biased when channel noise is large, the path delay should be determined before simulation.
- 15. For example, if a path delay is 552 nsec and channel gain is -20 dB, if channel noise is large it could be difficult for the Rake receiver to correctly resolve this path. In this case, simply increase channel gain to a larger value and decrease the noise level to a very small level. (These changes do not change the channel delay profile.)
- 16. The first value of PathDelaySample is set to 0. At start of simulation, the path delay is displayed in the simulation window.

```
DF: Simulation started.
DF: Scheduler finished scheduling
G3: Number of paths is 1.
G3:
Path no. 0 is at sample no.145.
```

- 17. The path delay determined by the Rake receiver is 145. This value has high credibility because it is obtained under large signal-to-noise level. Specify this delay in PathDelaySample and the Rake receiver will use this value during simulation. (The channel gain and noise level will be restored to the original level after the channel delay is fixed.)
- 18. If the path delay is fixed, the path search is necessary only at the start of simulation; in this case, set PathSearch to Once to save simulation time. Otherwise, PathSearch must be performed for each slot received to update the path delay information that could be dynamic.
- 19. Channel estimation varies according to channel type as described below:
 - If ChannelType = CH_GAUSSIAN, the channel is assumed to be time-invariant and the IQ phase shift is estimated using the pilot field of the signals received so far.
 - If ChannelType = CH_FADING, channel characteristics are assumed to be timevariant and more complicated channel estimation must be used. A simple channel estimation is used that takes the fading characteristic averaged over the pilot field of the current slot as the channel information for the entire slot.
- 20. Generally the pilot in current slots is enough for channel estimation. But if E $_{\rm b}$ /N $_{\rm 0}$ is

very low, while channel status varies relatively slowly, more slots are necessary for a reliable channel estimation. EstSlotsNum can be used to set the number of slots used for channel estimation.

- 21. If UsingMovingWindow = YES and ChannelType = CH_FADING, a more complex channel estimation will be used to get more precise channel estimation. The algorithm is as follows:
 - Use channel estimation algorithm described in the second paragraph in Note 14

- Despread and decode data transmitted in the DPCCH using the channel information.
- Use the decode data as know information so that all the symbols in DPCCH can be can be think as pilot and used in channel estimation.
- Set estimation window to be 21 DPCCH symbols centered at each DPCCH symbol of current slot.
- Moving-average 21 fading characteristics in estimation window to get 10 channel coefficients and each of them used as channel information of correspond symbol interval.
- 22. Channel information that is estimated or known from input pins is output from the pin outChM for reference. Each firing, 2560 tokens are produced as the channel information for the chips in the slot indicated by SlotIndex.
- 23. All paths are combined assuming that all the paths are useful in improving the decoding reliability. Some paths with low SNR are actually harmful to the final SNR improvement. The user must determine the PathNum setting for better decoding performance in multipath conditions.
- 24. Each firing, input tokens is 2560 × SampleRate. There is a delay in terms of slots associated with the decoded information. The outputs are aligned at the TTI boundary; for example, if the first received slot index is 0 and TTI is 2ms, the decoded bit stream will be output after three slots.
- 25. If the HSUPA signal is S(t), this signal may be delayed t1 by some filters (such as the Tx RC filters). So, the delayed signal is S(t-t1) and the signal from 0 to t1 is zero and the real 3GPP signal transmission starts from t1. When the delayed signals pass through a fading channel, the fading factor is applied to the overall signals starting from time 0. The offset t1 must be known if the receiver of the channel information is input from outside; this offset is expressed in terms of samples. The following description provides more details.
 - Denote the signal source output as:

S₁, S₂, S₃,..., S_i,... These signals are fed to the transmitter module,

and the transmitter module introduces delay (for example, the square root raised-cosine filter introduces the delay that is related with the filter length); denote this delay as N.

• The output signals from transmitter module are:

0, 0, 0,..., 0, S $_1$, S $_2$, S $_3$,..., S $_i$,... The number of 0s is N. These

signals are fed to the fading channel model.

• The fading channel module generates the fading factors, that can be denoted as:

f $_1$, f $_2$, f $_3$,..., f $_i$,... These factors will be applied to the input signals.

They can also be input to the Rake receiver as phase reference. • The resultant faded signals are:

f $_{1\times}$ 0, f $_{2\times}$ 0, f $_{3\times}$ 0, ..., f $_{N\times}$ 0, ..., f $_{N+1\times}$ S $_1$, f $_{N+2\times}$ S $_2$ Note that the faded signal must pass the receiver module that introduces additional delay; this does not impact the channel information offset setting.

• The channel information being input to the Rake receiver is:

f $_1$, f $_2$, f $_3$, ..., f $_i$, ... The Rake receiver must know the offset between the faded signal and the known channel information. In this case, the

Advanced Design System 2011.01 - HSUPA Design Library offset is *N*, and the Rake receiver will take the *Nth* input from the channel information input and correlate it with the signal start point. The signal start point is determined by the synchronization module implemented inside the Rake receiver.

References

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.10.0, Dec. 2008.
- 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 7.9.0, Sept. 2008.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sept. 2008.
- 4. 3GPP Technical Specification TS 25.104, "UTRA (BS) FDD: Radio transmission and Reception," Version 7.10.0, Mar. 2008.
- 5. 3GPP Technical Specification TS 25.141, "Base station conformance test," Version 7.11.0, Mar. 2008.

HSUPA_UL_Source

Description: HSUPA uplink signal source **Library:** HSUPA, Signal Sources

Parameters

Advanced Design	System	2011.01 -	- HSUPA	Design I	Library

Name	Description	Default	Symbol	Unit	Туре	Range
EDCH_Category	FDD E-DCH physical layer categories: Category 1, Category 2, Category 3, Category 4, Category 5, Category 6, Category 7	Category 6			enum	
TransBlockSize	Transport block size	2706	L		int	[1,max transport block size] ⁺
TTI	Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms			enum	
PuncLimit	Puncturing limit for uplink	0.468			real	[PLmax , 1]‡
RV_Mode	Redundancy version mode: Calculated using RSN, Only index 0	Calculated using RSN			enum	
MaxRSN	Maximum retransmission sequence number	3			int	[0,3]
HARQ_PrcssMode	Way to setting number of HARQ: Depending on TTI, User defined	Depending on TTI			enum	
NumHARQ	Number of HARQ processes	4			int	[4,8]
DataPattern	Source data pattern: Random, PN9, PN15, Repeat Bits	Random			enum	
RepeatBitValue	Repeating data value	0x0001			int	[0, 65535]
RepeatBitPeriod	Repeating data period	2			int	[1, 16]
DPDCH_Configured	Setting to YES if DPDCH is configured, otherwise NO: NO, YES	NO			enum	
HSDPCCH_Configured	Setting to YES if HS-DPCCH is configured, otherwise NO: NO, YES	NO			enum	
GainD	channel gain of DPDCH over DPCCH	-300		dB	real	[-∞, +∞)
GainED	channel gain of E-DPDCH over DPCCH	12.04		dB	real array	[-∞, +∞)
GainEC	channel gain of E-DPCCH over DPCCH	6.02		dB	real array	[-∞, +∞)
GainHS	channel gain of HS-DPCCH over DPCCH	-300		dB	real array	[-∞, +∞)
SlotF_DPDCH	slot format index of DPDCH	2			int	[0,6]
Scramble	scramble code type: LONG, SHORT	LONG			enum	
ScrambleCode	Index of scramble code	0			int	[0,512] for downlink; [0, 16777215] for uplink

Pin Inputs

Pin	Name	Description	Signal Type
1	ARQ	automatic repeat request	int

Pin Outputs

Advanced Design System 2011.01 - HSUPA Design Library

Pin	Name	Description	Signal Type
2	Output	output	complex
3	RSN	retransmission sequence number	int
4	BitED	bits of E-DPDCH	int
5	BitEC	bits of E-DPCCH	int

Notes/Equations

- 1. This subnetwork is used to implement baseband uplink source for HSUPA.
- 2. The schematic is shown below:

- 3. For more information about E-DCH parameters, see *HSUPA_RateMatch* (hsupa).
- 4. For more information about HARQ function, see *HSUPA_Bits* (hsupa) and *HSUPA_RateMatch* (hsupa).
- 5. For more information, please refer to the documentation for models used in this subnetwork.

References

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.6.0, May 2008.
- 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD)," Version 7.9.0, Sep. 2008.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sep. 2008.

HSUPA_UL_SourceRF

Description: HSUPA RF uplink signal source **Library:** HSUPA, Signal Sources

Parameters

Name	Description	Default	Symbol	Unit	Туре	Range
ROut	Source resistance	DefaultROut		Ohm	real	(0,∞)
RTemp	Temperature	DefaultRTemp		Celsius	real	[-273.15,∞)
TStep	Expression showing how TStep is related to the other source parameters	1/3.84 MHz/SamplesPerChip			string	
FCarrier	Carrier frequency	1950MHz		Hz	real	(0,∞)
Power	Power	dbmtow(24.0)		W	real	[0,∞)
MirrorSpectrum	Mirror spectrum about carrier?: NO, YES	NO			enum	
GainImbalance	Gain imbalance, Q vs I	0.0		dB	real	(-∞,∞)
PhaseImbalance	Phase imbalance, Q vs I	0.0		deg	real	(-∞,∞)
I_OriginOffset	I origin offset (percent)	0.0			real	(-∞,∞)
Q_OriginOffset	Q origin offset (percent)	0.0			real	(-∞,∞)
IQ_Rotation	IQ rotation	0.0		deg	real	(-∞,∞)
SamplesPerChip	Samples per chip	8	S		int	[2,32]
RRC_FilterLength	RRC filter length (chips)	16			int	[2,128]
ExcessBW	Excess bandwidth of raised cosine filters	0.22			real	(0.0,1.0)
RV_Mode	Redundancy version mode: Calculated using RSN, Only index 0	Calculated using RSN			enum	
MaxRSN	Maximum retransmission sequence number	3			int	[0,3]
		128				1

	Advanced	Design System 2011.01	- HSUPA D	esign Library	7
HARQ_PrcssMode	Way to setting number of HARQ: Depending on TTI, User defined	Depending on TTI		enum	
NumHARQ	Number of HARQ processes	4		int	[2,8]
ScrambleCode	Index of scramble code	0		int	[0,512] for downlink; [0, 16777215] for uplink
Scramble	scramble code type: LONG, SHORT	LONG		enum	
DataPattern	Source data pattern: Random, PN9, PN15, Repeat Bits	Random		enum	
RepeatBitValue	Repeating data value	0x0001		int	[0, 65535]
RepeatBitPeriod	Repeating data period	2		int	[1, 16]
EDCH_Category	FDD E-DCH physical layer categories: Category 1, Category 2, Category 3, Category 4, Category 5, Category 6, Category 7	Category 6		enum	
TransBlockSize	Transport block size	2706	L	int	[1,max transport block size]†
ТТІ	Transmission time interval: TTI 2ms, TTI 10ms	TTI 2ms		enum	
PuncLimit	Puncturing limit for uplink	0.468		real	[PLmax , 1]‡
DPDCH_Configured	Setting to YES if DPDCH is configured, otherwise NO: NO, YES	NO		enum	
HSDPCCH_Configured	Setting to YES if HS- DPCCH is configured, otherwise NO: NO, YES	NO		enum	
GainD	channel gain of DPDCH over DPCCH	-300	d	B real	[-∞, +∞)
GainED	channel gain of E- DPDCH over DPCCH	12.04	d	B real array	[-∞, +∞)
GainEC	channel gain of E- DPCCH over DPCCH	6.02	d	B real array	[-∞, +∞)
GainHS	channel gain of HS- DPCCH over DPCCH	-300	d	B real array	[-∞, +∞)
SlotF_DPDCH	slot format index of DPDCH	2		int	[0,6]

Pin Inputs

Pin	Name	Description	Signal Type
1	ARQ	automatic repeat request	int

Advanced Design System 2011.01 - HSUPA Design Library

Pin Outputs

Pin	Name	Description	Signal Type
2	RF	RF output	timed
3	EVM_Ref	reference signal for EVM	complex
4	RSN	retransmission sequence number	int
5	BitED	bits of E-DPDCH	int
6	BitEC	bits of E-DPCCH	int

Notes/Equations

- 1. This model is used to implement uplink source for HSUPA in RF.
- 2. The schematic is shown below:

- 3. The output of EVMRef is ideal uplink signal and can be used as reference signal for EVM and output power measurement.
- 4. For more information, see HSUPA UL Source (hsupa).

References

- 1. 3GPP Technical Specification TS 25.211, "Physical channels and mapping of transport channels onto physical channels (FDD)," Version 7.6.0, May 2008. 2. 3GPP Technical Specification TS 25.212, "Multiplexing and channel coding (FDD),"
- Version 7.9.0, Sep. 2008.
- 3. 3GPP Technical Specification TS 25.213, "Spreading and modulation (FDD)," Version 7.6.0, Sep. 2008.

HSUPA User Equipment Receiver Design Examples

The HSUPA_UE_Rx_wrk workspace shows user equipment receiver measurement performances, including E-AGCH demodulation performance, E-HICH detection performance, and E-RGCH detection performance.

Designs for these measurements are described in the following sections; they include:

- E-AGCH demodulation performance:
 - UE_Rx_EAGCH_Demodulation
 - UE_Rx_EAGCH_DemodulationFading
- E-HICH detection performance:
 - UE_Rx_EHICH_Detection
 - UE_Rx_EHICH_DetectionFading
- E-RGCH detection performance:
 - UE_Rx_ERGCH_Detection
 - UE_Rx_ERGCH_DetectionFading

Designs under this workspace consist of:

- Downlink RF band signal source: HSUPA_DL_SourceRF is used to provide an RF HSUPA downlink signal source.
- Fading channel: HSPA_Channel is used to provide various multi-path fading propagation conditions.
- AWGN noise: AddNDensity is used to provide AWGN in order to calibrate the E $_{\rm c}$ /I $_{\rm or}$

at certain levels, which are required by various performance measurements.

• User Equipment RF receiver: HSUPA_DL_ReceiverRF is used to provide a receiver of RF HSUPA downlink signals.

E-AGCH Demodulation Performance Measurements

Design: UE_Rx_EAGCH_DemodulationFading, UE_Rx_EAGCH_Demodulation

Features:

- User equipment E-AGCH demodulation performance measurements
- Integrated RF models
- Multi-path fading propagation conditions

Description:

- UE_Rx_EAGCH_DemodulationFading measures user equipment receiver E-AGCH demodulation performance according to section 10.4.1 in TS 25.101.
- UE_Rx_EAGCH_Demodulation measures user equipment receiver E-AGCH demodulation performance over AWGN condition to provide the baseline reference.

The schematics for fading and AWGN conditions are shown in *UE_Rx_EAGCH_DemodulationFading Schematic* and *UE_Rx_EAGCH_Demodulation Schematic* respectively.

UE_Rx_EAGCH_DemodulationFading Schematic

UE_Rx_EAGCH_Demodulation Schematic

Simulation Results:

Simulation results are shown in *User Equipment E-AGCH Demodulation Performance Results (Fading)* and *User Equipment E-AGCH Demodulation Performance Results (AWGN)*.

User Equipment E-AGCH Demodulation Performance Results (Fading)

HSUPA E-AGCH Single Link Performance Fading-Tables						
real(FCarrier)/(1 MHz)	real(lor)		real(loc)		real(SignalP	ower_dBm)
2140.000		-80.000		-60.000		10.000
Missed detection probability vs. E-AGCHEc/lor(dB)						
real(EAGCH_Eclor)		BE	R		FER	
-23.200		2.500E-4			5.000E-4	
3GPP Specification TS 25.101 (2006-3) Section 10.4.1						
Specification requirements Test results						
Missed detection probability is 1% at given Ecilor For VA30 channel simulation, E-AGCH Ecilor are -23.2 dB. Passed						
Notes: Please go to page titled Equations to see variable definitions.						

User Equipment E-AGCH Demodulation Performance Results (AWGN)

HSUPA E-AGC	H Si	ngle Link F	Performar	nceT	ables
real(FCarrier)/(1 M Hz)		real(lor)	real(loc)		real(SignalPower_dBm)
2140.000	-80.000			-60.000	10.000
Missed detection probabilityvs. E-AGCH Ec/lor(dB)					
real(EAGCH_Eclor)	real(EAGCH_Eclor)		R		FER
-29.500			0.001		0.003
3GPP Specification T	S 25.1	01 (2006-3) Se	ection 10.4.1		
Specification requirements Test results					
Missed detection probability is 1% at given Ecilor For AWGN ideal simulation, E-AGCH Ecilor are -29.5 dB.			Pa	ssed	
Notes: Please go to page titled Equations to see variable definitions.					

Benchmark:

Simulation time is about 30 hours (fading) and 3 hours (AWGN) for 2000 10 μ s TTI, on a P4/2.6GHz 512M PC running ADS 2005A on Microsoft Windows 2000.

E-HICH Detection Performance Measurements

Design: UE_Rx_EHICH_DetectionFading, UE_Rx_EHICH_Detection

Features:

- User equipment E-HICH demodulation performance measurements
- Integrated RF models
- Multi-path fading propagation conditions

Description:

- UE_Rx_EHICH_DetectionFading measures user equipment receiver E-HICH detection performance according to section 10.2.1 in TS 25.101.
- UE_Rx_EHICH_Detection measures user equipment receiver E-HICH detection performance over AWGN condition to provide the baseline reference.

The schematics of fading and AWGN conditions are shown in *UE_Rx_EHICH_DetectionFading Schematic* and *UE_Rx_EHICH_Detection Schematic* respectively.

UE_Rx_EHICH_DetectionFading Schematic

UE_Rx_EHICH_Detection Schematic

Simulation Results:

Simulation results are shown in User Equipment E-HICH Detection Performance Results (Fading) and User Equipment E-HICH Detection Performance Results (AWGN).

User Equipment E-HICH Detection Performance Results (Fading)

HSUPA E-HICH	Single Link P	erformance Fa	dingTables	
al(FCarrier[0,0])/(1 MHz)	real(lor[0,0])	real(loc[0,0])	SignalPower_dBm[0,0])	
2140.000	-60.000	-60.000	10.000	
Missed detection probability vs. E-HICH Ec/lor(dB)				
real(EHICH	L_Eq[0,0])	ErrorRa	te[0,0]	
	-28.300		0.008	
False detection probability				
	ErrorRa	te[1,0]		
			0.436	
3GPP Specification TS 25.101 (2006-3) Section 10.2.1				
Specification requirement	ents	Test results		
Missed and faise detection prob For VA30 channel simulation, EF	ability are 1% and 50% at given 8 HICH Ec/loris -28.3 dB.	Eclor Passed		
Notes: Please go to page titleo	d Equations to see variable de	finitions.		

User Equipment E-HICH Detection Performance Results (AWGN)

HSUPA E-HICH	Single Link Pe	erformanceTa	bles
al(FCarrier[0,0])/(1 MHz)	real(lor[0,0])	real(loc[0,0])	SignalPower_dBm[0,0])
2140.000	-60.000	-60.000	10.000
	Missed detection probabilit	ty vs. E-HICH Ec/lor(dB)	
real(EHICH_E	d[0,0])	ErrorRa	te[0,0]
	-32.000		0.009
	False detection	n probability	
	ErrorRat	te[1,0]	
			0.467
3GPP Specification TS	25.101 (2006-3) S	ection 10.2.1	
Specification requirement	s	Test results	
Missed and faise detection probabil For AWGN ideal simulation, EHICH	lity are 1% and 50% atgiven E Ec/loris-32 dB.	c/lor Passed	
Notes: Please go to page titled E	quations to see variable de	finitions.	

Benchmark:

Simulation time is about 9.7 hours (fading, VA30) and 3 hours (AWGN) for 11000 2µs TTI, on a P4/2.6GHz 512MB PC running ADS 2005A on Microsoft Windows 2000.

E-RGCH Detection Performance Measurements

Design: UE_Rx_ERGCH_Detection, UE_Rx_ERGCH_DetectionFading

Features:

- User equipment E-RGCH demodulation performance measurements
- Integrated RF models
- Multi-path fading propagation conditions

Description:

- UE_Rx_ERGCH_DetectionFading measures user equipment receiver E-RGCH detection performance according to section 10.3.1 in TS 25.101.
- UE_Rx_ERGCH_Detection measures user equipment receiver E-RGCH detection performance over AWGN condition to provide the baseline reference.

The schematics for fading and AWGN conditions are shown in *UE_Rx_ERGCH_DetectionFading Schematic* and *UE_Rx_ERGCH_Detection Schematic*.

UE_Rx_ERGCH_DetectionFading Schematic

UE_Rx_ERGCH_Detection Schematic

Simulation Results:

Simulation results are shown in User Equipment E-RGCH Detection Performance Results (Fading) and User Equipment E-RGCH Detection Performance Results (AWGN).

User Equipment E-RGCH Detection Performance Results (Fading)

HSUPA E-RGC	H Single Link F	Performance Fa	adingTables	
al (FCarrier[0,0])/(1 MHz)	re al(lor[0,0])	real(loc[0,0])	SignalPower_dBm[0,0])	
2140.000	-60.000	-60.000	10.000	
Missed detection probability(Using 3 slots) vs. E-RGCH Ec/lor(dB)				
real(ERGC	H_Ed(0,0])	BER	0,0]	
	-24.400		0.003	
	False detecto	on probability		
	BER	[1,0]		
0.080				
3GPP Specification TS 25.101 (2006-3) Section 10.3.1				
Specification requireme	nts	Test results		
Missed and false detection probat For VA30 channel simulation, E-R	blity are 5% and 10% at given Eo GCH Ec/loris -24.4 dB.	Passed		
Notes: Please go to page titled	Equations to see variable de	finitions.		

User Equipment E-RGCH Detection Performance Results (AWGN)

HSUPA E-RGC	H Single Link F	PerformanceT	ables	
al(FCarrier[0,0])/(1 MHz)	re al(lor[0,0])	real(loc[0,0])	SignalPower_dBm[0,0])	
2140.000	-60.000	-60.000	10.000	
Missed detection probability(Using 3 slots) vs. E-RGCH Ec/lor(dB)				
real(ERGC	H_Eq(0,0])	ErrorRa	te[0,0]	
	-31.000		0.031	
False detection probability				
	ErrorRa	te[1,0]		
0.091				
3GPP Specification TS 25.101 (2006-3) Section 10.3.1				
Specification requireme	nts	Test results		
Missed and failse detection proba For AW GN ideal simulation, E-RG	blity are 5% and 10% at given E CHEC/loris -31 dB.	Passed		
Notes: Please go to page titled	l Equations to see variable de	fini tio ns.		

Benchmark:

Simulation time is about 10 hours (fading) and 1.5 hours (AWGN) for 6000 2µs TTI, on a P4/2.6GHz 512MB PC running ADS 2005A on Microsoft Windows 2000.

References

1. 3GPP Technical Specification TS 25.101, "UE Radio transmission and Reception (FDD)," Version 7.13.0, Sept. 2008.

HSUPA User Equipment Transmitter Design Examples

The HSUPA_UE_Tx_wrk workspace shows user equipment transmitter measurement characteristics, including adjacent channel leakage power ratio (ACLR), complementary cumulative distribution function (CCDF), error vector magnitude (EVM), maximum power, and spectrum emission mask. Designs for these measurements are described in the following sections; they include:

- Adjacent channel leakage power ratio measurements: **UE_Tx_ACLR**
- CCDF and peak-to-mean information measurements: UE_Tx_CCDF
- Error vector magnitude measurements: **UE_Tx_EVM**
- Maximum power measurements: UE_Tx_Max_Power
- Spectrum emission mask measurements: UE_Tx_SpecEmissions

Adjacent Channel Leakage Power Ratio Measurements

Design: UE_Tx_ACLR

HSUPA_UL_SourceRF is used to provide an RF HSUPA uplink signal source for the designs under this workspace.

Features:

- HSUPA uplink RF signal source
- signal source including DPCCH, DPDCH, E-DPCCH, E-DPDCH, and HSDPCCH
- power in an adjacent channel measured using FFT

Description:

- This design measures user equipment transmitter adjacent channel leakage power ratio (ACLR) characteristics according to section 6.6.2.2 in TS 25.101.
- ACLR is the ratio of the transmitted power to the power measured in an adjacent channel. Both the transmitted power and the adjacent channel power are measured with a filter that has a root-raised cosine (RRC) filter response with a rolloff of 0.22 and a bandwidth equal to the chip rate. 3GPPFDD_RF_ACLR is used to measure output power.
- Frequency domain power in 4 adjacent channels is measured: 2 above and 2 below the center frequency of the measured signal.
- 3GPPFDD_RF_ACLR is used to measure output power
- The schematic is shown below:

Simulation Results:

Simulation results are shown below:

• User Equipment ACLR Measurement Results - Table:

real(FCarrier)/(1 N	Hz)	real(Signa	Power_d	Bm)		real(SourceR)	
1	950.000			22.000		50.000)
Main, Upp	per, and l	Lower	Chan	nel Po	wers	(dBm)	
Main_Ch_Pwr	J10_Ch_Pw r	U5_Ch	Pwr	L5_Ch	Pwr	L10_Ch_Pwr	
21.740	-42.728		-33.279		-33.200	-42.625	
		ACLR	(dB)				
ACLR_U10	ACLR	ACLR_U5		CLR_L5		ACLR_L10	
64.468		55.020		54.	940	64.365	
HSUPA/3	GPP Spec	ification	TS 25.1	101(v7.1	13.0)	section 6.6.2.2	
Specification requ	irements					Test Results	
5 MHz or -5 MHz	33 dE	3				Passed	
10 MHz or -10 MHz	43 dE	3					
the adjacent channel p	ower is greater	than - 50d	Bm		Cautio	n, ACP greater tha	n -50a

• And User Equipment ACLR Measurement Results - Figure:

Benchmark:

Simulation time is about 12 seconds on a Pentium M/1.6GHz 1024MB PC running ADS 2005A on Microsoft Windows XP.

CCDF and Peak-to-Mean Information Measurements

Design: UE_Tx_CCDF

Features:

- HSUPA uplink RF signal source
- signal source including DPCCH, DPDCH, E-DPCCH, E-DPDCH, and HSDPCCH
- CCDF and peak-to-mean information measured by the CCDF model

Description:

- CCDF measurement is *not* defined in the 3GPP specification. However, the complementary cumulative distribution function (CCDF) and peak-to-mean information are very useful for analyzing amplifier performance.
- The schematic is shown below:

Simulation Results:

Simulation results are shown below:

• User Equipment CCDF Measurement Results - Table:

i(FCamer)/(1MHZ)	real(SignalPower_dBm)	real(SourceR)
1950.000	22.000	50.000
	weare ow er_upm	reakrower_upm
can to mean ao		
5.616	21.999	27.614

• And User Equipment CCDF Measurement Results - Figure:

Benchmark:

Simulation time is about 3 seconds on a Pentium M/1.6GHz 1024MB PC running ADS 2005A on Microsoft Windows XP.

Error Vector Magnitude Measurements

Design: UE_Tx_EVM

Features:

- HSUPA uplink RF signal source
- signal source including DPCCH, DPDCH, E-DPCCH, E-DPDCH, and HSDPCCH
- error vector magnitude is measured by the EVM model
- phase discontinuity is measured by the EVM model
- reference signal is used

Description:

- This design measures user equipment transmitter error vector magnitude (EVM) and phase discontinuity characteristics according to section 6.8.2 and 6.8.4 in TS 25.101 respectively.
- EVM is a measure of the difference between the measured waveform and the theoretical modulated waveform (the error vector). It is the square root of the ratio of the mean error vector power to the mean reference signal power expressed as a percentage.
- For Release 99 and Release 4, the EVM measurement interval is one timeslot. For Release 5 and later releases where tests may include power changes, the measurement interval is further clarified as being one timeslot except when the mean power between slots is expected to change whereupon the measurement interval is reduced by 25 ms at each end of the slot.
- The phase discontinuity is always made in the measurement interval of one timeslot reduced by 25 ms at each end of the slot, then extrapolated in both directions onto the timeslot boundaries.
- The schematic is shown in below:

Simulation Results:

Simulation results are shown in User Equipment EVM Measurement Results below:

Passed

HSUPA - EVM Measurement EVM: Error Vector Magnitude

real(FCarrier)/(1 MHz)	real(SignalPower_dBm)	real(SourceR)
1950.000	22.000	50.000

Avg_EVM (%)	Avg_EVM (dB)
0.993	-40.06
3GPP Specification TS 25.101,	V7.13.0, section 6.8.2
Specification requirements	Test results

According to TS 25.101, V7.13.0, section 6.8.2, when 16QAM is not used on any of the uplink code channels, the EVM shall not exceed 17.5% for the parameters specified in Table 6.15. When 16QAM used on any of the uplink code channels, the EVM shall not exceed 14% for the parameters specified in Table 6.15.

Notes: Please go to page titled Equations to edit the EVM threshold or to see variable definitions.

Benchmark

Simulation time is about 30 seconds on a Pentium M/1.6GHz 1024MB PC running ADS 2005A on Microsoft Windows XP.
Maximum Power Measurements

Design: UE_Tx_Max_Power

Features:

- HSUPA uplink RF signal source
- signal source including DPCCH, DPDCH, E-DPCCH, E-DPDCH, and HSDPCCH
- output power is measured by the HSUPA RF output power model

Description:

- This design measures user equipment transmitter maximum output power characteristics according to section 6.2.2 in TS 25.101.
- The schematic is shown in below:

Simulation Results:

Simulation results are shown in **User Equipment Maximum Output Power Measurement Results** below:

Benchmark:

Simulation time is about 8 seconds on a Pentium M/1.6GHz 1024MB PC running ADS 2005A on Microsoft Windows XP.

Spectrum Emission Mask Measurements

Design: UE_Tx_SpecEmissions

Features:

- HSUPA uplink RF signal source
- signal source including DPCCH, DPDCH, E-DPCCH, E-DPDCH, and HSDPCCH
- ParamSweep and SweepPlan is used

Description:

- This design measures user equipment transmitter out-of-band emission characteristics according to section 6.6.2.1 in TS 25.101.
- The spectrum emission mask of the UE applies to frequencies, which are between 2.5 MHz and 12.5 MHz away from the UE center carrier frequency. The out of channel emission is specified relative to the RRC filtered mean power of the UE carrier.
- The schematic is shown in below:

Simulation Results:

Simulation results are shown in *User Equipment Spectrum Emission Mask Measurement Results below:

Benchmark

Simulation time is about 25 minutes on a Pentium M/1.6GHz 1024MB PC running ADS 2005A on Microsoft Windows XP.

References

1. 3GPP Technical Specification TS 25.101, "UE Radio transmission and Reception (FDD)," Version 6.11.0, Mar. 2006.